2 resultados para Projects in dispute
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The grazing lands of northern Australia contain a substantial soil organic carbon (SOC) stock due to the large land area. Manipulating SOC stocks through grazing management has been presented as an option to offset national greenhouse gas emissions from agriculture and other industries. However, research into the response of SOC stocks to a range of management activities has variously shown positive, negative or negligible change. This uncertainty in predicting change in SOC stocks represents high project risk for government and industry in relation to SOC sequestration programs. In this paper, we seek to address the uncertainty in SOC stock prediction by assessing relationships between SOC stocks and grazing land condition indicators. We reviewed the literature to identify land condition indicators for analysis and tested relationships between identified land condition indicators and SOC stock using data from a paired-site sampling experiment (10 sites). We subsequently collated SOC stock datasets at two scales (quadrat and paddock) from across northern Australia (329 sites) to compare with the findings of the paired-site sampling experiment with the aim of identifying the land condition indicators that had the strongest relationship with SOC stock. The land condition indicators most closely correlated with SOC stocks across datasets and analysis scales were tree basal area, tree canopy cover, ground cover, pasture biomass and the density of perennial grass tussocks. In combination with soil type, these indicators accounted for up to 42% of the variation in the residuals after climate effects were removed. However, we found that responses often interacted with soil type, adding complexity and increasing the uncertainty associated with predicting SOC stock change at any particular location. We recommend that caution be exercised when considering SOC offset projects in northern Australian grazing lands due to the risk of incorrectly predicting changes in SOC stocks with change in land condition indicators and management activities for a particular paddock or property. Despite the uncertainty for generating SOC sequestration income, undertaking management activities to improve land condition is likely to have desirable complementary benefits such as improving productivity and profitability as well as reducing adverse environmental impact.
Resumo:
The achievement and measurement of improvements and innovations is not often an overt practice in the design and delivery of government services other than in health services. There is a need for specific mechanisms proven to increase the rate and scale of improvements and innovations in organisations, communities, regions and industries. This paper describes a model for the design, measurement and management of projects and services as systems for achieving and sustaining outcomes, improvements and innovations.The development of the model involved the practice of continuous improvement and innovation within and across a number of agricultural development projects in Australia and nternationally. Key learnings from the development and use of the model are: (1) all elements and factors critical for success can be implemented, measured and managed; (2) the design of a meaningful systemic measurement framework is possible; (3) all project partners can achieve and sustain rapid improvements and innovations; (4) outcomes can be achieved from early in the life of projects; and (5) significant spill-over benefits can be achieved beyond the scope, scale and timeframe of projects