2 resultados para Programme

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicoverpa spp. and mirids, Creontiades spp., have been difficult to control biologically in cotton due to their unpredictable temporal abundance combined with a cropping environment often made hostile by frequent usage of broad spectrum insecticides. To address this problem, a range of new generation insecticides registered for use in cotton were tested for compatibility with the assassin bug, Pristhesancus plagipennis (Walker), a potential biological control agent for Helicoverpa spp. and Creontiades spp. Indoxacarb, pyriproxifen, buprofezin, spinosad and fipronil were found to be of low to moderate toxicity on P. plagipennis whilst emamectin benzoate, abamectin, diafenthiuron, imidacloprid and omethaote were moderate to highly toxic. Inundative releases of P. plagipennis integrated with insecticides identified as being of low toxicity were then tested and compared with treatments of P. plagipennis and the compatible insecticides used alone, conventionally sprayed usage practice and an untreated control during two field experiments in cotton. The biological control provided by P. plagipennis nymphs when combined with compatible insecticides provided significant (P<0.001) reductions in Helicoverpa and Creontiades spp. on cotton and provided equivalent yields to conventionally sprayed cotton with half of the synthetic insecticide input. Despite this, the utilization of P. plagipennis in cotton as part of an integrated pest management programme remains unlikely due to high inundative release costs relative to other control technologies such as insecticides and transgenic (Bt) cotton varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid genetic gains for growth in barramundi ( Lates calcarifer) appear achievable by starting a breeding programme using foundation stock from progeny tested broodstock. The potential gains of this novel breeding design were investigated using biologically feasible scenarios tested with computer simulation models. The design involves the production of a large number of full-sib families using artificial mating which are compared in common growout conditions. The estimated breeding values of their paternal parents are calculated using a binomial probit analysis to assess their suitability as foundation broodstock. The programme can theoretically yield faster rates of genetic gain compared to other breeding programmes for aquaculture species. Assuming a heritability of 0.25 for growth, foundation broodstock evaluated in two years had breeding values for faster growth ranging from 21% to 51% depending on the genetic diversity of stock under evaluation. As a comparison it will take between nine and twenty-two years to identify broodstock with similar breeding values in a contemporary barramundi breeding programme.