3 resultados para Precocious institutionalization
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Coccidiosis is an economically important parasitic disease of chickens that, in Australia, is caused by seven species of the genus Eimeria.1 The disease has traditionally been controlled by prophylactic drugs, but vaccination with attenuated lines of the parasites2–4 is rapidly gaining acceptance world wide. Live Eimeria vaccines are produced in batches which are not frozen and have a limited shelf life. The per cent infectivity of vaccine seed stocks and the vaccines produced from them must therefore be accurately monitored using standardised dose dependant assays to ensure that shelf life, quality control and vaccine release specifications are met. Infectivity for the chicken host cannot readily be determined by microscopic observation of oocysts or sporocyst hatching.5 Dose dependent parameters such as body weight gain, feed conversion ratio, visual lesion scores, mortality, oocysts production, clinical symptoms and microscopic lesion counts could be used as measures of infectivity.6–11 These parameters show significant dose dependant effects with field strains, but lines of vaccine parasites that have been selected for precocious development with associated reduced virulence and reproductive capability may not have the same effect.3,4 The aim of this trial was to determine which parameters provide the most effective measures of infective dose in birds inoculated with a precocious vaccine strain.
Resumo:
Objective To attenuate two strains of Eimeria tenella by selecting for precocious development and evaluate the strains in characterisation trials and by field evaluation, to choose one precocious line for incorporation into an Australian live coccidiosis vaccine for poultry. Design Two strains from non-commercial flocks were passaged through chickens while selecting for precocious development. Each strain was characterised for drug sensitivity, pathogenicity, protection against homologous and heterologous challenge, and oocyst output in replicated experiments in which the experimental unit was a cage of three birds. Oocyst output and/or body weight gain data collected over a 10 to 12 day period following final inoculation were measured. Feed conversion ratios were also calculated where possible. Results Fifteen passages resulted in prepatent periods reduced by 24 h for the Redlands strain (from 144 h to 120 h)and 23 h for the Darryl strain (from 139 h to 116 h). Characterisation trials demonstrated that each precocious line was significantly less pathogenic than its parent strain and each effectively induced immunity that protected chickens against challenge with both the parent strain and other virulent field strains. Both lines had oocyst outputs that, although significantly reduced relative to the parent strains, remained sufficiently high for commercial vaccine production, and both showed susceptibility to coccidiostats. Conclusion Two attenuated lines have been produced that exhibit the appropriate characteristics for use in an Australian live coccidiosis vaccine.
Resumo:
Live vaccines containing attenuated parasite strains are increasingly used to control chicken coccidiosis. In this paper antibody responses elicited by infections with wild-type and attenuated strains of Eimeria tenella and E.necatrix were characterized by immunoblotting and ELISA with homologous and heterologous antisera. Few differences between antisera from birds infected with wild and attenuated strains of E. tenella were evident in immunoblots conducted with merozoite antigen preparations from both E. tenella strains, however the reactivity of sera raised in birds infected with the wild-type strain was noticeably more intense. In ELISAs conducted with merozoite antigen preparations, antisera from birds infected with the wild-type strains of E. tenella and E. necatrix consistently produced a significantly higher (P < 0.05) antibody response than antisera from birds infected with the attenuated strains. Likewise, avidity ELISAs conducted with the E. tenella strains demonstrated that antibodies in birds infected with the wild-type strain were of significantly higher avidity (P < 0.05) than antibodies in birds infected with the attenuated strain. The differences in the antibody responses are probably due to changes in the attenuated strain as a result of selection for precocious development and the less severe tissue damage and inflammation of the intestine resulting from infection with the attenuated strain.