7 resultados para Potassium Channel

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternaria leaf blight is the most prevalent disease of cotton in northern Australia. A trial was conducted at Katherine Research Station, Northern Territory, Australia, to determine the effects of foliar application of potassium nitrate (KNO3) on the suppression of Alternaria leaf blight of cotton. Disease incidence, severity and leaf shedding were assessed at the bottom (1-7 nodes), middle (8-14 nodes) and the top (15+ nodes) of plants at weekly intervals from 7 July to 22 September 2004. Disease incidence, severity and shedding at the middle canopy level were significantly higher for all treatments than those from bottom and top canopies. Foliar KNO3, applied at 13 kg/ha, significantly (P < 0.05) reduced the mean disease incidence, severity and leaf shedding assessed during the trial period. KNO 3 significantly (P < 0.001) reduced the disease severity and leaf shedding at the middle canopy level. Almost all leaves in the middle canopy became infected in the first week of July in contrast to infection levels of 50-65% at the bottom and top of the canopy. Disease severity and leaf shedding in the middle canopy were significantly (P < 0.05) lower in KNO 3-treated plots than the control plots from the second and third weeks of July to the second and third weeks of August. This study demonstrates that foliar application of KNO3 may be effective in reducing the effect of Alternaria leaf blight of cotton in northern Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty-seven surface (0-0.10 or 0-0.20 m) soils covering a wide range of soil types (16 Vertosols, 6 Ferrosols, 6 Dermosols, 4 Hydrosols, 2 Kandosols, 1 Sodosol, 1 Rudosol, and 1 Chromosol) were exhaustively cropped in 2 glasshouse experiments. The test species were Panicum maximum cv. Green Panic in Experiment A and Avena sativa cv. Barcoo in Experiment B. Successive forage harvests were taken until the plants could no longer grow in most soils because of severe potassium (K) deficiency. Soil samples were taken prior to cropping and after the final harvest in both experiments, and also after the initial harvest in Experiment B. Samples were analysed for solution K, exchangeable K (Exch K), tetraphenyl borate extractable K for extraction periods of 15 min (TBK15) and 60 min (TBK60), and boiling nitric acid extractable K (Nitric K). Inter-correlations between the initial levels of the various soil K parameters indicated that the following pools were in sequential equilibrium: solution K, Exch K, fast release fixed K [estimated as (TBK15-Exch K)], and slow release fixed K [estimated as (TBK60-TBK15)]. Structural K [estimated as (Nitric K-TBK60)] was not correlated with any of the other pools. However, following exhaustive drawdown of soil K by cropping, structural K became correlated with solution K, suggesting dissolution of K minerals when solution K was low. The change in the various K pools following cropping was correlated with K uptake at Harvest 1 ( Experiment B only) and cumulative K uptake ( both experiments). The change in Exch K for 30 soils was linearly related to cumulative K uptake (r = 0.98), although on average, K uptake was 35% higher than the change in Exch K. For the remaining 7 soils, K uptake considerably exceeded the change in Exch K. However, the changes in TBK15 and TBK60 were both highly linearly correlated with K uptake across all soils (r = 0.95 and 0.98, respectively). The slopes of the regression lines were not significantly different from unity, and the y-axis intercepts were very small. These results indicate that the plant is removing K from the TBK pool. Although the change in Exch K did not consistently equate with K uptake across all soils, initial Exch K was highly correlated with K uptake (r = 0.99) if one Vertosol was omitted. Exchangeable K is therefore a satisfactory diagnostic indicator of soil K status for the current crop. However, the change in Exch K following K uptake is soil-dependent, and many soils with large amounts of TBK relative to Exch K were able to buffer changes in Exch K. These soils tended to be Vertosols occurring on floodplains. In contrast, 5 soils (a Dermosol, a Rudosol, a Kandosol, and 2 Hydrosols) with large amounts of TBK did not buffer decreases in Exch K caused by K uptake, indicating that the TBK pool in these soils was unavailable to plants under the conditions of these experiments. It is likely that K fertiliser recommendations will need to take account of whether the soil has TBK reserves, and the availability of these reserves, when deciding rates required to raise exchangeable K status to adequate levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative potassium (K) balances in all broadacre grain cropping systems in northern Australia are resulting in a decline in the plant-available reserves of K and necessitating a closer examination of strategies to detect and respond to developing K deficiency in clay soils. Grain growers on the Red Ferrosol soils have increasingly encountered K deficiency over the last 10 years due to lower available K reserves in these soils in their native condition. However, the problem is now increasingly evident on the medium-heavy clay soils (Black and Grey Vertosols) and is made more complicated by the widespread adoption of direct drill cropping systems and the resulting strong strati. cation of available K reserves in the top 0.05-0.1 m of the soil pro. le. This paper reports glasshouse studies examining the fate of applied K fertiliser in key cropping soils of the inland Burnett region of south-east Queensland, and uses the resultant understanding of K dynamics to interpret results of field trials assessing the effectiveness of K application strategies in terms of K availability to crop plants. At similar concentrations of exchangeable K (K-exch), soil solution K concentrations and activity of K in the soil solution (AR(K)) varied by 6-7-fold between soil types. When K-exch arising from different rates of fertiliser application was expressed as a percentage of the effective cation exchange capacity (i.e. K saturation), there was evidence of greater selective adsorption of K on the exchange complex of Red Ferrosols than Black and Grey Vertosols or Brown Dermosols. Both soil solution K and AR(K) were much less responsive to increasing K-exch in the Black Vertosols; this is indicative of these soils having a high K buffer capacity (KBC). These contrasting properties have implications for the rate of diffusive supply of K to plant roots and the likely impact of K application strategies (banding v. broadcast and incorporation) on plant K uptake. Field studies investigating K application strategies (banding v. broadcasting) and the interaction with the degree of soil disturbance/mixing of different soil types are discussed in relation to K dynamics derived from glasshouse studies. Greater propensity to accumulate luxury K in crop biomass was observed in a Brown Ferrosol with a KBC lower than that of a Black Vertosol, consistent with more efficient diffusive supply to plant roots in the Ferrosol. This luxury K uptake, when combined with crops exhibiting low proportional removal of K in the harvested product (i.e. low K harvest index coarse grains and winter cereals) and residue retention, can lead to rapid re-development of stratified K profiles. There was clear evidence that some incorporation of K fertiliser into soil was required to facilitate root access and crop uptake, although there was no evidence of a need to incorporate K fertiliser any deeper than achieved by conventional disc tillage (i.e. 0.1-0.15 m). Recovery of fertiliser K applied in deep (0.25-0.3 m) bands in combination with N and P to facilitate root proliferation was quite poor in Red Ferrosols and Grey or Black Vertosols with moderate effective cation exchange capacity (ECEC, 25-35 cmol(+)/kg), was reasonable but not enough to overcome K deficiency in a Brown Dermosol (ECEC 11 cmol(+)/kg), but was quite good on a Black Vertosol (ECEC 50-60 cmol(+)/kg). Collectively, results suggest that frequent small applications of K fertiliser, preferably with some soil mixing, is an effective fertiliser application strategy on lighter clay soils with low KBC and an effective diffusive supply mechanism. Alternately, concentrated K bands and enhanced root proliferation around them may be a more effective strategy in Vertosol soils with high KBC and limited diffusive supply. Further studies to assess this hypothesis are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to initiate and manipulate flowering with KClO3 allows flowering of longan, to be triggered outside of the normal flowering season (July-September) in Australia. Fruit maturity following normal flowering will occur approximately six-eight months (180-220 days) from flowering, depending on variety. Out of season flowering will result in differing times to maturity due to different temperature regimes during the maturity period. Knowing how long fruit will take to mature from different KClO3 application dates is potentially a valuable tool for growers to use as it would allow them to time their applications with market opportunities, e.g. Chinese New Year, periods of low volumes or periods of high prices. A simple heat-sum calculation was shown to reliably quantify fruit maturity periods, 2902 and 3432 growing degree days for Kohala and Biew Kiew respectively. Growers can use heat-sum as a predictive tool to allow for efficient planning of harvesting, packaging and freight requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘Sustainable Grazing in the Channel Country Floodplains’ was initiated by industry to redress the lack of objective information for sustainable management in the floodplains of Cooper Creek and the Diamantina and Georgina Rivers. The project has maintained links with the grazing community and has extensively drawn upon expert local experience and knowledge. The project has provided tools for managers to better anticipate the size of beneficial flooding arising from rains in the upper catchment and to more objectively assess the value of the pasture resulting from flooding. The latest information from the project has enabled customisation of the EDGENetwork™ Grazing Land Management training package for the Channel Country. In combination, these tools will assist in making earlier cattle stocking decisions, including when cattle may need to be mustered out of floodplain paddocks, how many additional cattle will be required to take advantage of the flood–grown pasture, and the timing of cattle turnoff. These will reduce costs by providing a greater lead time to plan cattle movements and purchases, and may enhance the sustainability of the resource base by better matching cattle numbers with the feed on offer.