25 resultados para Possibility
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Sharks caught in tropical Australian waters occasionally exhibit tough texture. Two species of Carcharinid shark, originally known as the sorrah shark (Carcharinus sorrah) and the black spot shark (Carcharinus tilstoni), compose the majority of the catch. Experiments were conducted to identify the cause of tough texture and to improve the overall quality of the catch. The possibility that a cold shock reaction may occur was investigated by observing the contraction of fillets under a range of temperature conditions before freezing. The effect of on-board handling practices were evaluated using frozen shark fillets, which had been stored prior to freezing in refrigerated seawater at different rigor stages, temperatures and times as trunks. Fillets were analyzed for nucleotides, lactate, thaw pH, sarcomere length and raw and cooked shear force values. The existence of thaw rigor was also investigated. There was little difference in the texture between the individual strips of a fillet exposed to different temperatures but there were significant differences between individual sharks. A cold shock reaction could not be demonstrated in these species. The main influences on texture were of biological origin. The species, sex and size were found to have significant links with texture of fillets. The quality of the fillets deteriorated quicker during the warmer season and were at their worst if the trunks were kept on deck till post-rigor or held in 15 degree C refrigerated seawater before freezing
Resumo:
The hypothesis that contaminant plants growing amongst chickpea serve as Helicoverpa sinks by diverting oviposition pressure away from the main crop was tested under field conditions. Gain (recruitment) and loss (presumed mortality) of juvenile stages of Helicoverpa spp. on contaminant faba bean and wheat plants growing in chickpea plots were quantified on a daily basis over a 12-d period. The possibility of posteclosion movement of larvae from the contaminants to the surrounding chickpea crop was examined. Estimated total loss of the census population varied from 80 to 84% across plots and rows. The loss of brown eggs (40–47%) contributed most to the overall loss estimate, followed by loss of white eggs (27–35%) and larvae (6–9%). The cumulative number of individuals entering the white and brown egg and larval stages over the census period ranged from 15 to 58, 10–48 and 1–6 per m row, respectively. The corresponding estimates of mean stage-specific loss, expressed as a percentage of individuals entering the stage, ranged from 52 to 57% for white eggs, 87–108% for brown eggs and 71–87% for first-instar larvae. Mean larval density on chickpea plants in close proximity to the contaminant plants did not exceed the baseline larval density on chickpea further away from the contaminants across rows and plots. The results support the hypothesis that contaminant plants in chickpea plots serve as Helicoverpa sinks by diverting egg pressure from the main crop and elevating mortality of juvenile stages. Deliberate contamination of chickpea crops with other plant species merits further investigation as a cultural pest management strategy for Helicoverpa spp.
Resumo:
Degree of dominance of phosphine resistance was investigated in adults of Rhyzopertha dominica F and Sitophilus oryzae L. Efficacy of the grain fumigant phosphine depends on both concentration and exposure period, which raises the possibility that dominance levels vary with exposure period. New and published data were used to test this possibility in adults of R dominica and S oryzae fumigated for periods of up to 144 h. The concentrations required for control of homozygous resistant and susceptible strains and their F1 hybrids decreased with increasing exposure period. For both species the response lines for the homozygous resistant and susceptible strains and their F1 hybrids were parallel. Therefore, neither dominance level nor resistance factor was affected by exposure period. Resistance was incompletely recessive and the level of dominance, calculated at 50% mortality level, was -0.59 for R dominica and -0.65 for S oryzae. The resistant R dominica strain was 30.9 times more resistant than the susceptible strain, compared with 8.9 times for the resistant S oryzae strain. The results suggest that developing discriminating doses for detecting heterozygote adults of either species will be difficult.
Resumo:
The pharaoh cuttle Sepia pharaonis Ehrenberg, 1831 (Mollusca: Cephalopoda: Sepiida) is a broadly distributed species of substantial fisheries importance found from east Africa to southern Japan. Little is known about S. pharaonis phylogeography, but evidence from morphology and reproductive biology suggests that Sepia pharaonis is actually a complex of at least three species. To evaluate this possibility, we collected tissue samples from Sepia pharaonis from throughout its range. Phylogenetic analyses of partial mitochondrial 16S sequences from these samples reveal five distinct clades: a Gulf of Aden/Red Sea clade, a northern Australia clade, a Persian Gulf/Arabian Sea clade, a western Pacific clade (Gulf of Thailand and Taiwan) and an India/Andaman Sea clade. Phylogenetic analyses including several Sepia species show that S. pharaonis sensu lato may not be monophyletic. We suggest that "S. pharaonis" may consist of up to five species, but additional data will be required to fully clarify relationships within the S. pharaonis complex.
Resumo:
Knowledge of the temporal and spatial characteristics of chokka squid (Loligo vulgaris reynaudii) biology in South African waters is limited, so the possibility of there being a geographically fragmented stock was examined by investigating the distribution of maturity patterns for the species, covering all known spawning areas and using both historical and recent data. Gonadosomatic indices (GSI) varied between year-round consistency and apparent seasonal peaks in both summer and winter; there was no clear spatial pattern. Monthly percentage maturity provided further evidence for two peak reproductive periods each year, although mature squid were present throughout. Sex ratios demonstrated great variability between different areas and life history stages. Male-biased sex ratios were only apparent on the inshore spawning grounds and ranged between 1.118:1 and 4.267:1. Size at sexual maturity was also seasonal, squid maturing smaller in winter/spring than in summer/autumn. Also, squid in the east matured smaller than squid in the west. Although the results from the present study do not provide conclusive evidence of distinct geographic populations, squid likely spawn over a significantly larger area of the Agulhas Bank than previously estimated, and squid on the west coast of South Africa may return to spawn on the western portion of the Agulhas Bank. It remains likely, however, that the east and west coast populations are a single stock and that migration of juveniles to the west coast and their subsequent return as sub-adults is an integral but non-essential and variable part of the life history.
Resumo:
Although migration patterns for various life history stages of the chokka squid (Loligo reynaudii) have been previously presented, there has been limited comparison of spatial variation in biological parameters. Based on data from research surveys; size ranges of juveniles, subadults and adults on the Agulhas Bank were estimated and presented spatially. The bulk of the results appear to largely support the current acceptance of the life cycle with an annual pattern of squid hatching in the east, migrating westwards to offshore feeding grounds on the Central and Western Agulhas Bank and the west coast and subsequent return migration to the eastern inshore areas to spawn. The number of adult animals in deeper water, particularly in autumn in the central study area probably represents squid spawning in deeper waters and over a greater area than is currently targeted by the fishery. The distribution of life history stages and different feeding areas does not rule out the possibility that discrete populations of L. reynaudii with different biological characteristics inhabit the western and eastern regions of the Agulhas Bank. In this hypothesis, some mixing of the populations does occur but generally squid from the western Agulhas Bank may occur in smaller numbers, grow more slowly and mature at a larger size. Spawning occurs on the western portion of the Agulhas Bank, and juveniles grow and mature on the west coast and the central Agulhas Bank. Future research requirements include the elucidation of the age structure of chokka squid both spatially and temporally, and a comparison of the statolith chemistry and genetic characterisation between adults from different spawning areas across the Agulhas Bank.
Resumo:
1. Mammalian predators are controlled by poison baiting in many parts of the world, often to alleviate their impacts on agriculture or the environment. Although predator control can have substantial benefits, the poisons used may also be potentially harmful to other wildlife. 2. Impacts on non-target species must be minimized, but can be difficult to predict or quantify. Species and individuals vary in their sensitivity to toxins and their propensity to consume poison baits, while populations vary in their resilience. Wildlife populations can accrue benefits from predator control, which outweigh the occasional deaths of non-target animals. We review recent advances in Australia, providing a framework for assessing non-target effects of poisoning operations and for developing techniques to minimize such effects. We also emphasize that weak or circumstantial evidence of non-target effects can be misleading. 3. Weak evidence that poison baiting presents a potential risk to non-target species comes from measuring the sensitivity of species to the toxin in the laboratory. More convincing evidence may be obtained by quantifying susceptibility in the field. This requires detailed information on the propensity of animals to locate and consume poison baits, as well as the likelihood of mortality if baits are consumed. Still stronger evidence may be obtained if predator baiting causes non-target mortality in the field (with toxin detected by post-mortem examination). Conclusive proof of a negative impact on populations of non-target species can be obtained only if any observed non-target mortality is followed by sustained reductions in population density. 4. Such proof is difficult to obtain and the possibility of a population-level impact cannot be reliably confirmed or dismissed without rigorous trials. In the absence of conclusive evidence, wildlife managers should adopt a precautionary approach which seeks to minimize potential risk to non-target individuals, while clarifying population-level effects through continued research.
Resumo:
Global amphibian decline by chytridiomycosis is a major environmental disaster that has been attributed to either recent fungal spread or environmental change that promotes disease. Here, we present a population genetic comparison of Batrachochytrium dendrobatidis isolates from an intensively studied region of frog decline, the Sierra Nevada of California. In support of a novel pathogen, we find low diversity, no amphibian-host specificity, little correlation between fungal genotype and geography, local frog extirpation by a single fungal genotype, and evidence of human-assisted fungus migration. In support of endemism, at a local scale, we find some diverse, recombining populations. Therefore neither epidemic spread nor endemism alone explains this particular amphibian decline. Recombination raises the possibility of resistant sporangia and a mechanism for rapid spread as well as persistence that could greatly complicate global control of the pathogen.
Resumo:
The Juvenile Hormone analogue s-methoprene is used to protect stored grain from pests such as the lesser grain borer, Rhyzopertha dominica (F.). The possibility that uneven application influences s-methoprene efficacy against this species was investigated in the laboratory. Adults of methoprene-susceptible strains were exposed for 14 days to wheat treated at doses of up to 0.6 mg kg-1, or to mixtures of treated and untreated wheat giving equivalent average doses. Adult mortality after exposure to treated wheat was negligible in all cases (3.3%) and there was no significant effect of either average dose or evenness of application. In contrast, the number of adult progeny depended on both the average dose and evenness of application. Average doses of 0.3 and 0.6 mg kg-1 reduced the number of live F1 adults by 99-100% relative to the untreated wheat and no effect of evenness of application was detected. At lower doses, however, efficacy tended to decrease with increasing unevenness of application. When adults from the parental generation were transferred to untreated wheat for another 14 days neither the average dose nor evenness of application in the wheat from which they came had any significant effect on reproduction of these adults. This study demonstrates that uneven application can reduce the efficacy of s-methoprene against R. dominica, but that this is unlikely to influence the performance of s-methoprene against susceptible populations at target doses likely to be used in practice (e.g. 0.6 mg kg-1 in Australia). However, the possibility that uneven application leads to underdosing and selects for resistance should be investigated.
Resumo:
Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management.
Resumo:
The requirement for Queensland, Northern Territory and Western Australian jurisdictions to ensure sustainable harvest of fish resources and their optimal use relies on robust information on the resource status. For grey mackerel (Scomberomorus semifasciatus) fisheries, each of these jurisdictions has their own management regime in their corresponding waters. The lack of information on stock structure of grey mackerel, however, means that the appropriate spatial scale of management is not known. As well, fishers require assurance of future sustainability to encourage investment and long-term involvement in a fishery that supplies lucrative overseas markets. These management and fisher-unfriendly circumstances must be viewed in the context of recent 3-fold increases in catches of grey mackerel along the Queensland east coast, combined with significant and increasing catches in other parts of the species' northern Australian range. Establishing the stock structure of grey mackerel would also immensely improve the relevance of resource assessments for fishery management of grey mackerel across northern Australia. This highlighted the urgent need for stock structure information for this species. The impetus for this project came from the strategic recommendations of the FRDC review by Ward and Rogers (2003), "Northern mackerel (Scombridae: Scomberomorus): current and future research needs" (Project No. 2002/096), which promoted the urgency for information on the stock structure of grey mackerel. In following these recommendations this project adopted a multi-technique and phased sampling approach as carried out by Buckworth et al (2007), who examined the stock structure of Spanish mackerel, Scomberomorus commerson, across northern Australia. The project objectives were to determine the stock structure of grey mackerel across their northern Australian range, and use this information to define management units and their appropriate spatial scales. We used multiple techniques concurrently to determine the stock structure of grey mackerel. These techniques were: genetic analyses (mitochondrial DNA and microsatellite DNA), otolith (ear bones) isotope ratios, parasite abundances, and growth parameters. The advantage of using this type of multi-technique approach was that each of the different methods is informative about the fish’s life history at different spatial and temporal scales. Genetics can inform about the evolutionary patterns as well as rates of mixing of fish from adjacent areas, while parasites and otolith microchemistry are directly influenced by the environment and so will inform about the patterns of movement during the fishes lifetime. Growth patterns are influenced by both genetic and environmental factors. Due to these differences the use of these techniques concurrently increases the likelihood of detecting different stocks where they exist. We adopted a phased sampling approach whereby sampling was carried out at broad spatial scales in the first year: east coast, eastern Gulf of Carpentaria (GoC), western GoC, and the NW Northern Territory (NW NT). By comparing the fish samples from each of these locations, and using each of the techniques, we tested the null hypothesis that grey mackerel were comprised of a single homogeneous population across northern Australia. Having rejected the null hypothesis we re-sampled the 1st year locations to test for temporal stability in stock structure, and to assess stock structure at finer spatial scales. This included increased spatial coverage on the east coast, the GoC, and WA. From genetic approaches we determined that there at least four genetic stocks of grey mackerel across northern Australia: WA, NW NT (Timor/Arafura), the GoC and the east Grey mackerel management units in northern Australia ix coast. All markers revealed concordant patterns showing WA and NW NT to be clearly divergent stocks. The mtDNA D-loop fragment appeared to have more power to resolve stock boundaries because it was able to show that the GoC and east coast QLD stocks were genetically differentiated. Patterns of stock structure on a finer scale, or where stock boundaries are located, were less clear. From otolith stable isotope analyses four major groups of S. semifasciatus were identified: WA, NT/GoC, northern east coast and central east coast. Differences in the isotopic composition of whole otoliths indicate that these groups must have spent their life history in different locations. The magnitude of the difference between the groups suggests a prolonged separation period at least equal to the fish’s life span. The parasite abundance analyses, although did not include samples from WA, suggest the existence of at least four stocks of grey mackerel in northern Australia: NW NT, the GoC, northern east coast and central east coast. Grey mackerel parasite fauna on the east coast suggests a separation somewhere between Townsville and Mackay. The NW NT region also appears to comprise a separate stock while within the GoC there exists a high degree of variability in parasite faunas among the regions sampled. This may be due to 1. natural variation within the GoC and there is one grey mackerel stock, or 2. the existence of multiple localised adult sub-stocks (metapopulations) within the GoC. Growth parameter comparisons were only possible from four major locations and identified the NW NT, the GoC, and the east coast as having different population growth characteristics. Through the use of multiple techniques, and by integrating the results from each, we were able to determine that there exist at least five stocks of grey mackerel across northern Australia, with some likelihood of additional stock structuring within the GoC. The major management units determined from this study therefore were Western Australia, NW Northern Territory (Timor/Arafura), the Gulf of Carpentaria, northern east Queensland coast and central east Queensland coast. The management implications of these results indicate the possible need for management of grey mackerel fisheries in Australia to be carried out on regional scales finer than are currently in place. In some regions the spatial scales of management might continue as is currently (e.g. WA), while in other regions, such as the GoC and the east coast, managers should at least monitor fisheries on a more local scale dictated by fishing effort and assess accordingly. Stock assessments should also consider the stock divisions identified, particularly on the east coast and for the GoC, and use life history parameters particular to each stock. We also emphasise that where we have not identified different stocks does not preclude the possibility of the occurrence of further stock division. Further, this study did not, nor did it set out to, assess the status of each of the stocks identified. This we identify as a high priority action for research and development of grey mackerel fisheries, as well as a management strategy evaluation that incorporates the conclusions of this work. Until such time that these priorities are addressed, management of grey mackerel fisheries should be cognisant of these uncertainties, particularly for the GoC and the Queensland east coast.
Resumo:
This study highlights the complexity of flowering biology in Syzygium and demonstrates how a basic understanding of a species’ fundamental biology is necessary for successful commercial cultivation. This report brings together useful information from previous international research on Syzygium as well as providing a basic understanding of flower biology, the nature of fruit set and seediness in riberry. Much of these findings have implications for the cultural management of riberry orchards to optimise fruit set and minimise seed set. It raises the possibility of avenues for genetic improvement.
Improved understanding of the damage, ecology, and management of mirids and stinkbugs in Bollgard II
Resumo:
In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.
Resumo:
Cotton bunchy top (CBT) disease has caused significant yield losses in Australia and is now managed by control of its vector, the cotton aphid (Aphis gossypii). Its mode of transmission and similarities in symptoms to cotton Blue Disease suggested it may also be caused by a luteovirus or related virus. Degenerate primers to conserved regions of the genomes of the family Luteoviridae were used to amplify viral cDNAs from CBT-affected cotton leaf tissue that were not present in healthy plants. Partial genome sequence of a new virus (Cotton bunchy top virus, CBTV) was obtained spanning part of the RNA-dependent-RNA-polymerase (RdRP), all of the coat protein and part of the aphid-transmission protein. CBTV sequences could be detected in viruliferous aphids able to transmit CBT, but not aphids from non-symptomatic plants, indicating that it is associated with the disease and may be the causal agent. All CBTV open-reading frames had their closest similarity to viruses of the genus Polerovirus. The partial RdRP had 90 % amino acid identity to the RdRP of Cotton leafroll dwarf virus (CLRDV) that causes cotton blue disease, while other parts of the genome were more similar to other poleroviruses. The sequence similarity and genome organization of CBTV suggest that it should be considered a new member of the genus Polerovirus. This partial genome sequence of CBTV opens up the possibility for developing diagnostic tests for detection of the virus in cotton plants, aphids and weeds as well as alternative strategies for engineering CBT resistance in cotton plants through biotechnology. © 2012 Australasian Plant Pathology Society Inc.
Resumo:
Nematode species Pratylenchus thornei and P. neglectus are the two most important root-lesion nematodes affecting wheat (Triticum aestivum L.) and other grain crops in Australia. For practical plant breeding, it will be valuable to know the mode of inheritance of resistance and whether the same set of genes confer resistance to both species. We evaluated reactions to P. thornei and P. neglectus of glasshouse-inoculated plants of five doubled-haploid populations derived from five resistant synthetic hexpaloid wheat lines, each crossed to the susceptible Australian wheat cultivar Janz. For each cross we determined genetic variance, heritability and minimum number of effective resistance genes for each nematode species. Distributions of nematode numbers for both species were continuous for all doubled-haploid populations. Heritabilities were high and the resistances were controlled by 4-7 genes. There was no genetic correlation between resistance to P. thornei and to P. neglectus in four of the populations and a significant but low correlation in one. Therefore, resistances to P. thornei and to P. neglectus are probably inherited quantitatively and independently in four of these synthetic hexaploid wheat populations, with the possibility of at least one genetic factor contributing to resistance to both species in one of the populations. Parents with the greatest level of resistance will be the best to use as donor parents to adapted cultivars, and selection of resistance to both species in early generations will be optimal to carry resistance through successive cycles of inbreeding to produce resistant cultivars for release.