4 resultados para Posner paradigm
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Seagrass meadows are declining globally at an unprecedented rate, yet these valuable ecosystem service providers remain marginalized within many conservation agendas. In the Indo-Pacific, this is principally because marine conservation priorities do not recognize the economic and ecological value of the goods and services that seagrasses provide. Dependency on coastal marine resources in the Indo-Pacific for daily protein needs is high relative to other regions and has been found in some places to be up to 100%. Habitat loss therefore may have negative consequences for food security in the region. Whether seagrass resources comprise an important contribution to this dependency remains largely untested. Here, we assemble information sources from throughout the Indo-Pacific region that discuss shallow water fisheries, and examine the role of seagrass meadows in supporting production, both directly, and indirectly through process of habitat connectivity (e.g., nursery function and foraging areas). We find information to support the premise that seagrass meadows are important for fisheries production. They are important fishery areas, and they support the productivity and biodiversity of coral reefs. We argue the value of a different paradigm to the current consensus on marine conservation priorities within the Indo-Pacific that places seagrass conservation as a priority.
Resumo:
The article discusses a new decision support process for forestry pest management. Over the past few years, DSS have been introduced for forestry pest management, providing forest growers with advice in areas such as selecting the most suitable pesticide and relevant treatment. Most of the initiatives process knowledge from various domains for providing support for specific decision making problems. However, very few studies have identified the requirements of developing a combined process model in which all relevant practitioners can contribute and share knowledge for effective decision making; such an approach would need to include the decision makers’ perspective along with other relevant attributes such as the problem context and relevant policies. We outline a decision support process for forestry pest management, based on the design science research paradigm, in which a focus group technique has application to acquire both expert and practical knowledge in order to construct the DSS solution.
Resumo:
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective. (C) 2012 The Authors Journal of Fish Biology (C) 2012 The Fisheries Society of the British Isles
Resumo:
Henipaviruses cause fatal infection in humans and domestic animals. Transmission from fruit bats, the wildlife reservoirs of henipaviruses, is putatively driven (at least in part) by anthropogenic changes that alter host ecology. Human and domestic animal fatalities occur regularly in Asia and Australia, but recent findings suggest henipaviruses are present in bats across the Old World tropics. We review the application of the One Health approach to henipavirus research in three locations: Australia, Malaysia and Bangladesh. We propose that by recognising and addressing the complex interaction among human, domestic animal and wildlife systems, research within the One Health paradigm will be more successful in mitigating future human and domestic animal deaths from henipavirus infection than alternative single-discipline approaches. © Springer-Verlag Berlin Heidelberg 2013.