4 resultados para Portal frames
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A dense population of Pimelea trichostachya plants (Family Thymelaeaceae) in pasture poisoned a horse herd in southern inland Queensland in October-November 2005. Plant density was 2 to 45 g wet weight/m2 (mean 16 g/m2) from 5 to 69 plants/m2 (mean 38 plants/m2) representing 3 to 20% (mean 9%) of the volume of pasture on offer. Ten of 35 mares, fillies and geldings were affected. Clinical signs were loss of body weight, profound lethargy, serous nasal discharge, severe watery diarrhoea and subcutaneous oedema of the intermandibular space, chest and ventral midline. Pathological findings were anaemia, leucocytopenia, hypoproteinaemia, dilatation of the right ventricle of the heart, dilated hepatic portal veins and periportal hepatic sinusoids (peliosis hepatis), alimentary mucosal hyperaemia and oedema of mesenteric lymph nodes. Cattle grazing the same pasture were affected by Pimelea poisoning simultaneously. Removal of the horses to Pimelea-free pasture initiated recovery. The one other incident of this syndrome, previously only recognised in cattle in Australia, occurred in horses, in South Australia in 2002, with access to a dense Pimelea simplex population.
Resumo:
Bovine herpesvirus 1 (BoHV-1) is an economically important pathogen of cattle associated with respiratory and reproductive disease. To further develop BoHV-1 as a vaccine vector, a study was conducted to identify the essential and non-essential genes required for in vitro viability. Randominsertion mutagenesis utilizing a Tn5 transposition system and targeted gene deletion were employed to construct gene disruption and gene deletion libraries, respectively, of an infectious clone of BoHV-1. Transposon insertion position and confirmation of gene deletion were determined by direct sequencing. The essential or non-essential requirement of either transposed or deleted open reading frames (ORFs) was assessed by transfection of respective BoHV-1 DNA into host cells. Of the 73 recognized ORFs encoded by the BoHV-1 genome, 33 were determined to be essential and 36 to be non-essential for virus viability in cell culture; determining the requirement of the two dual copy ORFs was inconclusive. The majority of ORFs were shown to conform to the in vitro requirements of BoHV-1 homologues encoded by human herpesvirus 1 (HHV-1). However, ORFs encoding glycoprotein K (UL53), regulatory, membrane, tegument and capsid proteins (UL54, UL49.5, UL49, UL35, UL20, UL16 and UL7) were shown to differ in requirement when compared to HHV-1-encoded homologues.
Resumo:
Mastreviruses (family Geminiviridae) that infect monocotyledonous plants occur throughout the temperate and tropical regions of Asia, Africa, Europe and Australia. Despite the identification of a very diverse array of mastrevirus species whose members infect African monocots, few such species have been discovered in other parts of the world. For example, the sequence of only a single monocot-infecting mastrevirus, Chloris striate mosaic virus (CSMV), has been reported so far from Australia, even though earlier biological and serological studies suggested that other distinct mastreviruses were present. Here, we have obtained the complete nucleotide sequence of a virus from the grass Digitaria didactyla originating from Australia. Analysis of the sequence shows the virus to be a typical mastrevirus, with four open reading frames, two in each orientation, separated by two non-coding intergenic regions. Although it showed the highest levels of sequence identity to CSMV (68.7%), their sequences are sufficiently diverse for the virus to be considered a member of a new species in the genus Mastrevirus, based on the present species demarcation criteria. We propose that the name first used during the 1980s be used for this species, Digitaria didactyla striate mosaic virus (DDSMV).
Resumo:
1. Weed eradication efforts often must be sustained for long periods owing to the existence of persistent seed banks, among other factors. Decision makers need to consider both the amount of investment required and the period over which investment must be maintained when determining whether to commit to (or continue) an eradication programme. However, a basis for estimating eradication programme duration based on simple data has been lacking. Here, we present a stochastic dynamic model that can provide such estimates. 2. The model is based upon the rates of progression of infestations from the active to the monitoring state (i.e. no plants detected for at least 12 months), rates of reversion of infestations from monitoring to the active state and the frequency distribution of time since last detection for all infestations. Isoquants that illustrate the combinations of progression and reversion parameters corresponding to eradication within different time frames are generated. 3. The model is applied to ongoing eradication programmes targeting branched broomrape Orobanche ramosa and chromolaena Chromolaena odorata. The minimum periods in which eradication could potentially be achieved were 22 and 23 years, respectively. On the basis of programme performance until 2008, however, eradication is predicted to take considerably longer for both species (on average, 62 and 248 years, respectively). Performance of the branched broomrape programme could be best improved through reducing rates of reversion to the active state; for chromolaena, boosting rates of progression to the monitoring state is more important. 4. Synthesis and applications. Our model for estimating weed eradication programme duration, which captures critical transitions between a limited number of states, is readily applicable to any weed.Aparticular strength of the method lies in its minimal data requirements. These comprise estimates of maximum seed persistence and infested area, plus consistent annual records of the detection (or otherwise) of the weed in each infestation. This work provides a framework for identifying where improvements in management are needed and a basis for testing the effectiveness of alternative tactics. If adopted, our approach should help improve decision making with regard to eradication as a management strategy.