59 resultados para Population genetic

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight polymorphic microsatellite loci were analysed in six population samples from four locations of the Australian endemic brown tiger prawn, Penaeus esculentus. Tests of Hardy-Weinberg equilibrium were generally in accord with expectations, with only one locus, in two samples, showing significant deviations. Three samples were taken in different years from the Exmouth Gulf. These showed no significant heterogeneity, and it was concluded that they were from a single panmictic population. A sample from Shark Bay, also on the west coast of Australia, showed barely detectable differentiation from Exmouth Gulf (F (ST) = 0 to 0.0014). A northeast sample from the Gulf of Carpentaria showed low (F (ST) = 0.008) but significant differentiation from Moreton Bay, on the east coast. However, Exmouth Gulf/Shark Bay samples were well differentiated from the Gulf of Carpentaria/Moreton Bay (F (ST) = 0.047-0.063). The data do not fit a simple isolation by distance model. It is postulated that the east-west differentiation largely reflects the isolation of east and west coast populations that occurred at the last glacial maximum when there was a land bridge between north-eastern Australia and New Guinea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial DNA D-loop (control) region (426-bp) was used to infer the genetic structure of Spanish mackerel (Scomberomorus commerson) from populations in Southeast Asia (Brunei, East and West Malaysia, Philippines, Thailand, Singapore, and China) and northern Australia (including western Timor). An east–west division along Wallace’s Line was strongly supported by a significant AMOVA, with 43% of the total sequence variation partitioned among groups of populations. Phylogenetic and network analyses supported two clades: clade A and clade B. Members of clade A were found in Southeast Asia and northern Australia, but not in locations to the west (Gulf of Thailand) or north (China). Clade B was found exclusively in Southeast Asia. Genetic division along Wallace’s Line suggests that co-management of S. commerson populations for future sustainability may not be necessary between Southeast Asian nations and Australia, however all countries should share the task of management of the species in Southeast Asia equally. More detailed genetic studies of S. commerson populations in the region are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Indo-West Pacific (IWP), from South Africa in the western Indian Ocean to the western Pacific Ocean, contains some of the most biologically diverse marine habitats on earth, including the greatest biodiversity of chondrichthyan fishes. The region encompasses various densities of human habitation leading to contrasts in the levels of exploitation experienced by chondrichthyans, which are targeted for local consumption and export. The demersal chondrichthyan, the zebra shark, Stegostoma fasciatum, is endemic to the IWP and has two current regional International Union for the Conservation of Nature (IUCN) Red List classifications that reflect differing levels of exploitation: ‘Least Concern’ and ‘Vulnerable’. In this study, we employed mitochondrial ND4 sequence data and 13 microsatellite loci to investigate the population genetic structure of 180 zebra sharks from 13 locations throughout the IWP to test the concordance of IUCN zones with demographic units that have conservation value. Mitochondrial and microsatellite data sets from samples collected throughout northern Australia and Southeast Asia concord with the regional IUCN classifications. However, we found evidence of genetic subdivision within these regions, including subdivision between locations connected by habitat suitable for migration. Furthermore, parametric FST analyses and Bayesian clustering analyses indicated that the primary genetic break within the IWP is not represented by the IUCN classifications but rather is congruent with the Indonesian throughflow current. Our findings indicate that recruitment to areas of high exploitation from nearby healthy populations in zebra sharks is likely to be minimal, and that severe localized depletions are predicted to occur in zebra shark populations throughout the IWP region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Northern Australia is considered to be one of the last strongholds for three critically endangered sawfishes, Pristis zijsron, Pristis clavata, and Pristis microdon, making these populations of global significance. Population structure and levels of genetic diversity were assessed for each species across northern Australia using a portion of the mitochondrial control region. Statistically significant genetic structure was detected in all three species, although it was higher in P. microdon (F-ST = 0.811; N = 149) than in either P. clavata (F-ST = 0.419; N = 73) or P. zijsron (F-ST = 0.202; N = 49), possibly due to a much higher and/or localized level of female philopatry in P. microdon. The overall levels of haplotype diversity in P. zijsron (h = 0.555), P. clavata (h = 0.489), and P. microdon (h = 0.650) were moderate, although it appears to be reduced in the assemblages of P. zijsron and P. clavata in the Gulf of Carpentaria (h = 0.342 and h = 0.083, respectively). Since female migration (replenishment) between regions is unlikely, conservation plans should strive to maintain current levels of diversity and abundances in the regional assemblages of each species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable management of sea mullet (Mugil cephalus) fisheries needs to account for recent observations of regional-scale differentiation. Population genetic analysis is sought to assess the situation of this ecologically and economically important fish species in eastern Australian waters. Here, we report (i) new population genetic markers [single nucleotide polymorphisms (SNPs) and potential microsatellites], (ii) first estimates of spatial genetic differentiation and (iii) prospective power tests for designing more comprehensive studies. Six DNA samples from three sampling regions (North Queensland, South Queensland and central New South Wales) on the eastern coast of Australia were used to prepare restriction site associated DNA (RAD) tag libraries from genomic DNA digested with EcoRI and MseI. A pooled sample of regional RAD tag libraries was sequenced using the Roche GS-FLX Titanium platform. A total of 172837 raw reads (17.4Mbp) were retrieved, 95500 of which were used to discover 1267 SNPs and 1417 microsatellites. A subset of 161 SNPs was validated based on 63 additional DNA samples genotyped using the Sequenom MassArray (iPLEX Gold chemistry). Altogether 92 SNPs (57%) were confirmed, with 40% of these marking fixed variants between northern and southern sampling regions. Our preliminary findings indicate a multispecies fishery stock of M. cephalus in eastern Australian waters, but suggest that strong genetic differentiation occurs north of major fishing grounds. Low potential differentiation within major fishing grounds (e.g. FST=0.0025) can be resolved with a likely power 67% by using standard sample sizes of 50 and validated subsets of available markers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Global amphibian decline by chytridiomycosis is a major environmental disaster that has been attributed to either recent fungal spread or environmental change that promotes disease. Here, we present a population genetic comparison of Batrachochytrium dendrobatidis isolates from an intensively studied region of frog decline, the Sierra Nevada of California. In support of a novel pathogen, we find low diversity, no amphibian-host specificity, little correlation between fungal genotype and geography, local frog extirpation by a single fungal genotype, and evidence of human-assisted fungus migration. In support of endemism, at a local scale, we find some diverse, recombining populations. Therefore neither epidemic spread nor endemism alone explains this particular amphibian decline. Recombination raises the possibility of resistant sporangia and a mechanism for rapid spread as well as persistence that could greatly complicate global control of the pathogen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Develop microsatellite markers to distinguish strains of Eimeria acervulina, E. brunetti and E. maxima. Conduct nationwide sampling of chicken faeces to build baseline of Eimeria population genetic diversity for 5 economically important speces (3 species above plus E. tenella and E. necatrix). Conduct focused local screening to assess temporal changes in populations historically sampled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic conditions in the northern and southern Mozambique Channel that influence early stages in the green turtle life cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n=244) and the milkshark (Rhizoprionodon acutus, n=209) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751 to 0.903; microsatellite loci, 0.038 to 0.047). Our results support the spatially-homogeneous management plan for shark species in Queensland, but caution is advised for species yet to be studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n=244) and the milkshark (Rhizoprionodon acutus, n=209) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751 to 0.903; microsatellite loci, 0.038 to 0.047). Our results support the spatially-homogeneous management plan for shark species in Queensland, but caution is advised for species yet to be studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine the structure and phylogeography of the pig-eye shark (Carcharhinus amboinensis) common in shallow coastal environments in northern Australia using two types of genetic markers, two mitochondrial (control region and NADH hydrogenase 4) and two nuclear (microsatellite and Rag 1) DNA. Two populations were defined within northern Australia on the basis of mitochondrial DNA evidence, but this result was not supported by nuclear microsatellite or Rag 1 markers. One possibility for this structure might be sex-specific behaviours such as female philopatry, although we argue it is doubtful that sufficient time has elapsed for any potential signatures from this behaviour to be expressed in nuclear markers. It is more likely that the observed pattern represents ancient populations repeatedly isolated and connected during episodic sea level changes during the Pleistocene epoch, until current day with restricted contemporary gene flow maintaining population genetic structure. Our results show the need for an understanding of both the history and ecology of a species in order to interpret patterns in genetic structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Turnip mosaic virus (TuMV) is a potyvirus that is transmitted by aphids and infects a wide range of plant species. We investigated the evolution of this pathogen by collecting 32 isolates of TuMV, mostly from Brassicaceae plants, in Australia and New Zealand. We performed a variety of sequence-based phylogenetic and population genetic analyses of the complete genomic sequences and of three non-recombinogenic regions of those sequences. The substitution rates, divergence times and phylogeographical patterns of the virus populations were estimated. Six inter- and seven intralineage recombination-type patterns were found in the genomes of the Australian and New Zealand isolates, and all were novel. Only one recombination-type pattern has been found in both countries. The Australian and New Zealand populations were genetically different, and were different from the European and Asian populations. Our Bayesian coalescent analyses, based on a combination of novel and published sequence data from three nonrecombinogenic protein-encoding regions, showed that TuMV probably started to migrate from Europe to Australia and New Zealand more than 80 years ago, and that distinct populations arose as a result of evolutionary drivers such as recombination. The basal-B2 subpopulation in Australia and New Zealand seems to be older than those of the world-B2 and -B3 populations. To our knowledge, our study presents the first population genetic analysis of TuMV in Australia and New Zealand. We have shown that the time of migration of TuMV correlates well with the establishment of agriculture and migration of Europeans to these countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When releasing captive-bred animals into wild populations, it is essential to maintain the capacity for adaptation and resilience by minimising the effect on population genetic diversity. Populations of the jungle perch (Kuhlia rupestris) have become reduced or locally extinct along the Queensland coast; thus, captive breeding of K. rupestris for restocking is presently underway. Currently, multiple individuals are placed in a tank to produce larvae, yet the number of adults contributing to larval production is unknown. We performed a power analysis on pre-existing microsatellite loci to determine the minimum number of loci and larvae required to achieve accurate assignment of parentage. These loci were then used to determine the number of contributing participants during a series of four spawning events through the summer breeding season in 2012-2013. Not all fish contributed to larval production and no relationship was found between male body size and parentage success. In most cases, there was a high skew of offspring to one mating pair (62% was the average contribution of the most successful pair per tank). This has significant implications for the aquaculture, restocking and conservation of K. rupestris.