47 resultados para Population control
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Since their release over 100 years ago, camels have spread across central Australia and increased in number. Increasingly, they are being seen as a pest, with observed impacts from overgrazing and damage to infrastructure such as fences. Irregular aerial surveys since 1983 and an interview-based survey in 1966 suggest that camels have been increasing at close to their maximum rate. A comparison of three models of population growth fitted to these, albeit limited, data suggests that the Northern Territory population has indeed been growing at an annual exponential rate of r = 0.074, or 8% per year, with little evidence of a density-dependent brake. A stage-structured model using life history data from a central Australian camel population suggests that this rate approximates the theoretical maximum. Elasticity analysis indicates that adult survival is by far the biggest influence on rate of increase and that a 9% reduction in survival from 96% is needed to stop the population growing. In contrast, at least 70% of mature females need to be sterilised to have a similar effect. In a benign environment, a population of large mammals such as camels is expected to grow exponentially until close to carrying capacity. This will frustrate control programs, because an ever-increasing number of animals will need to be removed for zero growth the longer that culling or harvesting effort is delayed. A population projection for 2008 suggests ~10 500 animals need to be harvested across the Northern Territory. Current harvests are well short of this. The ability of commercial harvesting to control camel populations in central Australia will depend on the value of animals, access to animals and the presence of alternative species to harvest when camels are at low density.
Resumo:
Glyphosate resistance is a rapidly developing threat to profitability in Australian cotton farming. Resistance causes an immediate reduction in the effectiveness of in-crop weed control in glyphosate-resistant transgenic cotton and summer fallows. Although strategies for delaying glyphosate resistance and those for managing resistant populations are qualitatively similar, the longer resistance can be delayed, the longer cotton growers will have choice over which tactics to apply and when to apply them. Effective strategies to avoid, delay, and manage resistance are thus of substantial value. We used a model of glyphosate resistance dynamics to perform simulations of resistance evolution in Sonchus oleraceus (common sowthistle) and Echinochloa colona (awnless barnyard grass) under a range of resistance prevention, delaying, and management strategies. From these simulations, we identified several elements that could contribute to effective glyphosate resistance prevention and management strategies. (i) Controlling glyphosate survivors is the most robust approach to delaying or preventing resistance. High-efficacy, high-frequency survivor control almost doubled the useful lifespan of glyphosate from 13 to 25 years even with glyphosate alone used in summer fallows. (ii) Two non-glyphosate tactics in-crop plus two in-summer fallows is the minimum intervention required for long-term delays in resistance evolution. (iii) Pre-emergence herbicides are important, but should be backed up with non-glyphosate knockdowns and strategic tillage; replacing a late-season, pre-emergence herbicide with inter-row tillage was predicted to delay glyphosate resistance by 4 years in awnless barnyard grass. (iv) Weed species' ecological characteristics, particularly seed bank dynamics, have an impact on the effectiveness of resistance strategies; S. oleraceus, because of its propensity to emerge year-round, was less exposed to selection with glyphosate than E. colona, resulting in an extra 5 years of glyphosate usefulness (18 v. 13 years) even in the most rapid cases of resistance evolution. Delaying tactics are thus available that can provide some or many years of continued glyphosate efficacy. If glyphosate-resistant cotton cropping is to remain profitable in Australian farming systems in the long-term, however, growers must adapt to the probability that they will have to deal with summer weeds that are no longer susceptible to glyphosate. Robust resistance management systems will need to include a diversity of weed control options, used appropriately.
Resumo:
Top-predators contribute to ecosystem resilience, yet individuals or populations are often subject to lethal control to protect livestock, managed game or humans from predation. Such management actions sometimes attract concern that lethal control might affect top-predator function in ways ultimately detrimental to biodiversity conservation. The primary function of a predator is predation, which is often investigated by assessing their diet. We therefore use data on prey remains found in 4,298 Australian dingo scats systematically collected from three arid sites over a four year period to experimentally assess the effects of repeated broad-scale poison-baiting programs on dingo diet. Indices of dingo dietary diversity and similarity were either identical or near-identical in baited and adjacent unbaited treatment areas in each case, demonstrating no control-induced change to dingo diets. Associated studies on dingoes' movement behaviour and interactions with sympatric mesopredators were similarly unaffected by poison-baiting. These results indicate that mid-sized top-predators with flexible and generalist diets (such as dingoes) may be resilient to ongoing and moderate levels of population control without substantial alteration of their diets and other related aspects of their ecological function.
Resumo:
BACKGROUND Control of pests in stored grain and the evolution of resistance to pesticides are serious problems worldwide. A stochastic individual-based two-locus model was used to investigate the impact of two important issues, the consistency of pesticide dosage through the storage facility and the immigration rate of the adult pest, on overall population control and avoidance of evolution of resistance to the fumigant phosphine in an important pest of stored grain, the lesser grain borer. RESULTS A very consistent dosage maintained good control for all immigration rates, while an inconsistent dosage failed to maintain control in all cases. At intermediate dosage consistency, immigration rate became a critical factor in whether control was maintained or resistance emerged. CONCLUSION Achieving a consistent fumigant dosage is a key factor in avoiding evolution of resistance to phosphine and maintaining control of populations of stored-grain pests; when the dosage achieved is very inconsistent, there is likely to be a problem regardless of immigration rate. © 2012 Society of Chemical Industry
Resumo:
Wild European rabbits are a serious problem to agriculture in Australia, with an estimated annual cost of A$ 113 million. Biological control agents (myxomatosis and rabbit haemorrhagic disease virus) have caused large and sustained declines in rabbit populations throughout Australia. A simulation model incorporates these diseases as well as warren destruction as methods of controlling rabbit populations in Queensland, north eastern Australia. These diseases reduced populations by 90-99% and the combination of these and warren destruction led to 100% control in simulations at six sites across southern Queensland. Increasing monthly pasture growth by 15% had little effect on simulated populations whereas a 15% decrease reduced populations by 0-50%. An increase in temperature of 2.5 °C would lead to a 15-60% decrease in populations. These effects suggest that climate change will lead to a decrease in the population of rabbits in Queensland and a retraction in the northern limit of their distribution in Australia.
Resumo:
Combating the spread of invasive fish is problematic, with eradication rarely possible and control options varying enormously in their effectiveness. In two small impoundments in north-eastern Australia, an electrofishing removal program was conducted to control an invasive tilapia population. We hypothesised that electrofishing would reduce the population density of Oreochromis mossambicus (Mozambique tilapia), to limit the risk of downstream spread into areas of high conservation value. We sampled by electrofishing monthly for 33 months. Over this period, there was an 87% decline in catch per unit effort (CPUE) of mature fish, coupled with a corresponding increase of 366% in the number of juveniles, suggesting a density-dependent response in the stock-recruitment relationship for the population. Temperature was inversely related to CPUE (r=0.43, lag=10 days), implying greater electrofishing efficiency in cooler months. The reduction in breeding stock is likely to reduce the risk of spread and render the population vulnerable to other control measures such as netting and/or biological control. Importantly, the current study suggests routine electrofishing may be a useful control tool for invasive fish in small impoundments when the use of more destructive techniques, such as piscicides, is untenable.
Resumo:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.
Resumo:
It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.
Resumo:
The East Indies triangle, bordered by the Phillipines, Malay Peninsula and New Guinea, has a high level of tropical marine species biodiversity. Pristipomoides multidens is a large, long-lived, fecund snapper species that is distributed throughout the East Indies and Indo-Pacific. Samples were analysed from central and eastern Indonesia and northern Australia to test for genetic discontinuities in population structure. Fish (n = 377) were collected from the Indonesian islands of Bali, Sumbawa, Flores, West Timor, Tanimbar and Tual along with 131 fish from two northern Australian locations (Arafura and Timor Seas) from a previous study. Genetic variation in the control region of the mitochondrial genome was assayed using restriction fragment length polymorphism and direct sequencing. Haplotype diversity was high (0.67-0.82), as was intraspecific sequence divergence (range 0-5.8%). FST between pairs of populations ranged from 0 to 0.2753. Genetic subdivision was apparent on a small spatial scale; FST was 0.16 over 191 km (Bali/Sumbawa) and 0.17 over 491 km (Bali/Flores). Constraints to dispersal that contribute to, and maintain, the observed degree of genetic subdivision are experienced presumably by all life history stages of this tropical marine finfish. The constraints may include (1) little or no movement of eggs or larvae, (2) little or no home range or migratory movement of adults and (3) loss of larval cohorts due to transport of larvae away from suitable habitat by prevailing currents
Resumo:
1 Five experiments were conducted during 1995-99 in stone fruit orchards on the Central Coast and in inland New South Wales, Australia, on the use of synthetic aggregation pheromones and a coattractant to suppress populations of the ripening fruit pests Carpophilus spp. (Coleoptera: Nitidulidae). 2 Perimeter-based suppression traps baited with pheromone and coattractant placed at 3m intervals around small fruit blocks, caught large numbers of Carpophilus spp. Very small populations of Carpophilus spp. occurred within blocks, and fruit damage was minimal. 3 Carpophilus spp. populations in stone fruit blocks 15-370m from suppression traps were also small and non-damaging, indicating a large zone of pheromone attractivity. 4 Pheromone/coattractant-baited suppression traps appeared to divert Carpophilus spp. from nearby (130 m) ripening stone fruit. Ten metal drums containing decomposing fruit, baited with pheromone and treated with insecticide, attracted Carpophilus spp. and appeared to reduce populations and damage to ripening fruit at distances of 200-500 m. Populations and damage were significantly greater within 200m of the drums and may have been caused by ineffective poisoning or poor quality/overcrowding of fruit resources in the drums. 5 Suppression of Carpophilus spp. populations using synthetic aggregation pheromones and a coattractant appears to be a realistic management option in stone fruit orchards. Pheromone-mediated diversion of beetle populations from ripening fruit may be more practical than perimeter trapping, but more research is needed on the effective range of Carpophilus pheromones and the relative merits of trapping compared to attraction to insecticide-treated areas.
Resumo:
Large larval populations of the scarabaeid beetle Heteronyx piceus Blanchard that occur under peanuts, but not maize, in the South Burnett region of Australia are the result of a high rate and prolonged period of egg production by females feeding on peanut foliage. Heteronyx piceus is a relatively sedentary species and movement of females between adjacent fields is low. Populations of H. piceus varied markedly with landscape position. High larval populations are more likely (1 in 4 chance) to be encountered on the ‘scrub’ soils in the upper parts of the landscape than in the ‘forest’ soils in the lower half (1 in 20 chance), indicating that soil type/landscape position is a key risk factor in assessing the need for management intervention. The studies indicate that, because of the species' sedentary nature, the most meaningful population entity for management of H. piceus is the individual field, rather than the whole-farm or the region. The implications of this population ecology for management of the pest are discussed in relation to control strategies.
Resumo:
1. Mammalian predators are controlled by poison baiting in many parts of the world, often to alleviate their impacts on agriculture or the environment. Although predator control can have substantial benefits, the poisons used may also be potentially harmful to other wildlife. 2. Impacts on non-target species must be minimized, but can be difficult to predict or quantify. Species and individuals vary in their sensitivity to toxins and their propensity to consume poison baits, while populations vary in their resilience. Wildlife populations can accrue benefits from predator control, which outweigh the occasional deaths of non-target animals. We review recent advances in Australia, providing a framework for assessing non-target effects of poisoning operations and for developing techniques to minimize such effects. We also emphasize that weak or circumstantial evidence of non-target effects can be misleading. 3. Weak evidence that poison baiting presents a potential risk to non-target species comes from measuring the sensitivity of species to the toxin in the laboratory. More convincing evidence may be obtained by quantifying susceptibility in the field. This requires detailed information on the propensity of animals to locate and consume poison baits, as well as the likelihood of mortality if baits are consumed. Still stronger evidence may be obtained if predator baiting causes non-target mortality in the field (with toxin detected by post-mortem examination). Conclusive proof of a negative impact on populations of non-target species can be obtained only if any observed non-target mortality is followed by sustained reductions in population density. 4. Such proof is difficult to obtain and the possibility of a population-level impact cannot be reliably confirmed or dismissed without rigorous trials. In the absence of conclusive evidence, wildlife managers should adopt a precautionary approach which seeks to minimize potential risk to non-target individuals, while clarifying population-level effects through continued research.
Resumo:
The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus. Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high (L. erythropterus, 0.95 and L. malabaricus, 0.97), as was intraspecific sequence divergence, (L. erythropterus, 0.0-12.5% and L. malabaricus, 0.0-9.5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape (L. malabaricus) or between Kupang and Australian Timor Sea (L. erythropertus). The allozyme analyses revealed similar boundaries for L. erythropterus. Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.
Resumo:
Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.
Resumo:
Tick fever is an important disease of cattle where Rhipicephalus (Boophilus) microplus acts as a vector for the three causal organisms Babesia bovis, Babesia bigemina and Anaplasma marginale. Bos indicus cattle and their crosses are more resistant to the clinical effects of infection with B. bovis and B. bigemina than are Bos taurus cattle. Resistance is not complete, however, and herds of B. indicus-cross cattle are still at risk of babesiosis in environments where exposure to B. bovis is light in most years but occasionally high. The susceptibility of B. indicus cattle and their crosses to infection with A. marginale is similar to that of B. taurus cattle. In herds of B. indicus cattle and their crosses the infection rate of Babesia spp. and A. marginale is lowered because fewer ticks are likely to attach per day due to reduced numbers of ticks in the field (long-term effect on population, arising from high host resistance) and because a smaller proportion of ticks that do develop to feed on infected cattle will in turn be infected (due to lower parasitaemia). As a consequence, herds of B. indicus cattle are less likely than herds of B. taurus cattle to have high levels of population immunity to babesiosis or anaplasmosis. The effects of acaricide application on the probability of clinical disease due to anaplasmosis and babesiosis are unpredictable and dependent on the prevalence of infection in ticks and in cattle at the time of application. Attempting to manipulate population immunity through the toleration of specific threshold numbers of ticks with the aim of controlling tick fever is not reliable and the justification for acaricide application should be for the control of ticks rather than for tick fever. Vaccination of B. indicus cattle and their crosses is advisable in all areas where ticks exist, although vaccination against B. bigemina is probably not essential in pure B. indicus animals.