3 resultados para Popular literature

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report collates data on the nutrient and phytochemical content of tropical exotic fruits, the evidence for health effects from consumption of these fruit and the use of extracts from edible and non-edible parts of these plants. The knowledge of Australian fruit compared with that grown overseas is presented together with opportunities for future work by Australian researchers. Opportunities for developing commercial extracts for use as food or nutraceutical uses are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pasture rest is a possible strategy for improving land condition in the extensive grazing lands of northern Australia. If pastures currently in poor condition could be improved, then overall animal productivity and the sustainability of grazing could be increased. The scientific literature is examined to assess the strength of the experimental information to support and guide the use of pasture rest, and simulation modelling is undertaken to extend this information to a broader range of resting practices, growing conditions and initial pasture condition. From this, guidelines are developed that can be applied in the management of northern Australia’s grazing lands and also serve as hypotheses for further field experiments. The literature on pasture rest is diverse but there is a paucity of data from much of northern Australia as most experiments have been conducted in southern and central parts of Queensland. Despite this, the limited experimental information and the results from modelling were used to formulate the following guidelines. Rest during the growing season gives the most rapid improvement in the proportion of perennial grasses in pastures; rest during the dormant winter period is ineffective in increasing perennial grasses in a pasture but may have other benefits. Appropriate stocking rates are essential to gain the greatest benefit from rest: if stocking rates are too high, then pasture rest will not lead to improvement; if stocking rates are low, pastures will tend to improve without rest. The lower the initial percentage of perennial grasses, the more frequent the rests should be to give a major improvement within a reasonable management timeframe. Conditions during the growing season also have an impact on responses with the greatest improvement likely to be in years of good growing conditions. The duration and frequency of rest periods can be combined into a single value expressed as the proportion of time during which resting occurs; when this is done the modelling suggests the greater the proportion of time that a pasture is rested, the greater is the improvement but this needs to be tested experimentally. These guidelines should assist land managers to use pasture resting but the challenge remains to integrate pasture rest with other pasture and animal management practices at the whole-property scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.