11 resultados para Pollen limitation index
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Seven discrete stages and substages of moulting in the ornate rock lobster, Panulirus ornatus, have been distinguished by microscopic examination of the cuticle and setae of the pleopods . The diagnostic features and the duration of each of the stages are described. Freezing did not visually alter the tissue features used to identify each moult stage. Pleopod morphology can reliably indicate whether a lobster has moulted within the previous 24 h or is within 72 h of the next ecdysis.
Resumo:
Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.
Resumo:
Sectors of the forest plantation industry in Australia are set to expand in the near future using species or hybrids of the spotted gums (Corymbia, Section Politaria). Plantations of these taxa have already been introduced across temperate and subtropical Australia, representing locally exotic introductions from native stands in Queensland and New South Wales. A literature review was undertaken to provide insights into the potential for pollen-mediated gene flow from these plantations into native populations. Three factors suggest that such gene flow is likely; (1) interspecific hybridisation within the genus has frequently been recorded, including between distantly related species from different sections, (2) apparent high levels of vertebrate pollinator activity may result in plantation pollen being moved over hundreds of kilometres, (3) much of the plantation estate is being established among closely related taxa and therefore few barriers to gene flow are expected. Across Australia, 20 of the 100 native Corymbia taxa were found to have regional level co-occurrence with plantations. These were located most notably within regions of north-east New South Wales and south-east Queensland, however, co-occurrence was also found in south-west Western Australia and eastern Victoria. The native species found to have co-occurrence were then assessed for the presence of reproductive barriers at each step in the process of gene flow that may reduce the number of species at risk even further. The available data suggest three risk categories exist for Corymbia. The highest risk was for gene flow from plantations of spotted gums to native populations of spotted gums. This was based on the expected limited existence of pre- and post-zygotic barriers, substantial long-distance pollen dispersal and an apparent broad period of flowering in Corymbia citriodora subsp. variegata plantations. The following risk category focussed on gene flow from Corymbia torelliana × C. c. variegata hybrid plantations into native C. c. variegata, as the barriers associated with the production and establishment of F1 hybrids have been circumvented. For the lowest risk category, Corymbia plantations may present a risk to other non-spotted gum species, however, further investigation of the particular cross-combinations is required. A list of research directions is provided to better quantify these risks. Empirical data will need to be combined within a risk assessment framework that will not only estimate the likelihood of exotic gene flow, but also consider the conservation status/value of the native populations. In addition, the potential impacts of pollen flow from plantations will need to be weighed up against their various economic and environmental benefits.
Resumo:
Forty-four study sites were established in remnant woodland in the Burdekin River catchment in tropical north-east Queensland, Australia, to assess recent (decadal) vegetation change. The aim of this study was further to evaluate whether wide-scale vegetation 'thickening' (proliferation of woody plants in formerly more open woodlands) had occurred during the last century, coinciding with significant changes in land management. Soil samples from several depth intervals were size separated into different soil organic carbon (SOC) fractions, which differed from one another by chemical composition and turnover times. Tropical (C4) grasses dominate in the Burdekin catchment, and thus δ13C analyses of SOC fractions with different turnover times can be used to assess whether the relative proportion of trees (C3) and grasses (C4) had changed over time. However, a method was required to permit standardized assessment of the δ13C data for the individual sites within the 13 Mha catchment, which varied in soil and vegetation characteristics. Thus, an index was developed using data from three detailed study sites and global literature to standardize individual isotopic data from different soil depths and SOC fractions to reflect only the changed proportion of trees (C3) to grasses (C3) over decadal timescales. When applied to the 44 individual sites distributed throughout the Burdekin catchment, 64% of the sites were shown to have experienced decadal vegetation thickening, while 29% had remained stable and the remaining 7% had thinned. Thus, the development of this index enabled regional scale assessment and comparison of decadal vegetation patterns without having to rely on prior knowledge of vegetation changes or aerial photography.
Resumo:
Site index prediction models are an important aid for forest management and planning activities. This paper introduces a multiple regression model for spatially mapping and comparing site indices for two Pinus species (Pinus elliottii Engelm. and Queensland hybrid, a P. elliottii x Pinus caribaea Morelet hybrid) based on independent variables derived from two major sources: g-ray spectrometry (potassium (K), thorium (Th), and uranium (U)) and a digital elevation model (elevation, slope, curvature, hillshade, flow accumulation, and distance to streams). In addition, interpolated rainfall was tested. Species were coded as a dichotomous dummy variable; interaction effects between species and the g-ray spectrometric and geomorphologic variables were considered. The model explained up to 60% of the variance of site index and the standard error of estimate was 1.9 m. Uranium, elevation, distance to streams, thorium, and flow accumulation significantly correlate to the spatial variation of the site index of both species, and hillshade, curvature, elevation and slope accounted for the extra variability of one species over the other. The predicted site indices varied between 20.0 and 27.3 m for P. elliottii, and between 23.1 and 33.1 m for Queensland hybrid; the advantage of Queensland hybrid over P. elliottii ranged from 1.8 to 6.8 m, with the mean at 4.0 m. This compartment-based prediction and comparison study provides not only an overview of forest productivity of the whole plantation area studied but also a management tool at compartment scale.
Resumo:
Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state, and national scales. There is now an increasing drive from industry for more accurate and cost-effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. Multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April-November) were investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period; (ii) harmonic analysis of the time series (HANTS) of the EVI values; and (iii) principal component analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea, and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at pixel scale (>98% correct classification) for identifying overall winter cropping. However, discrimination among crops was less accurate. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire scale, the result contradicted the poor pixel-scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped-area estimates before harvest.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
This report provides an evaluation of the behaviours and purchasing drivers of key sweetpotato consumers defined by Nielsen consumer research as Established Couples (two or more adults with no children 17 and under, and head of house 35-59), Senior Couples (two or more adults with no children 17 or under, and head of house 60 or over), and Independent Singles (one person household 35 or over, no children 17 or under). Research was qualitative in nature. Methods used included focus groups, depth interviews and shop-a-longs. The report found that preferences for sweetpotato amongst these groups were varied. In general a smaller torpedo shaped vegetable was valued for ease of preparation and the convenience of being of sufficient size for a meal for two. Satisfaction with sweetpotato was high with negative comments on quality exceedingly rare within discussions. However, shop-a-longs revealed that some quality issues were apparent at retail such as withered product, pitting and occasionally damage. A display with stock resting in any amount of water was a barrier to purchase for consumers and this was apparent on two out 15 occasions. A high quality sweetpotato was of a deep orange/red colour, had a smooth skin and was extremely dense and hard. An inferior sweetpotato was wrinkly, spongy, pitted and damaged. Awareness of sweetpotato was a relatively recent phenomenon amongst the respondents of this study with most recalling eating the vegetable in the last five to 10 years. Life-time eating patterns emerged as a consequence of childhood food experiences such as growing up with a ‘meat and three’ veg philosophy and traditional Australian meals. However, this was dependent on cultural background and those with ties to diverse cultures were more likely to have always known of the vegetable. Sweetpotato trial and consumption coincided with a breaking away from these traditional patterns, or was integrated into conventional meals such as a baked vegetable to accompany roasts. Increased health consciousness also led to awareness of the vegetable. A primary catalyst for consumption within the Established and Senior Couples groups was the health benefits associated with sweetpotato. Consumers had very little knowledge of the specific health properties of the vegetable and were surprised at the number of benefits consumption provided. Sweetpotato was important for diabetics for its low Glycemic Index status. Top-of-the-mind awareness of the vegetable resulted from the onset of the disease. Increasing fibre was a key motive for this demographic and this provided a significant link between consumption and preventing bowel cancer. For those on a weight loss regime, sweetpotato was perceived as a tasty, satisfying food that was low in carbohydrates. Swapping behaviours where white potato was replaced by sweetpotato was often a response to these health concerns. Other health properties mentioned by participants through the course of the research included the precursor β-carotene and Vitamins A & C. The sweetpotato was appreciated for its hedonic and timesaving qualities. For consumers with a high involvement in food, the vegetable was valued for its versatility in meals. These consumers took pride in cooking and the flavour and texture of sweetpotato lent itself to a variety of meals such as soups, salads, roasts, curries, tagines and so on. Participants who had little time or desire to prepare and cook meals valued sweetpotato because it was an easy way to add colour and variety to the plate and because including an orange vegetable to meals is a shortcut to ensuring vitamin intake. Several recommendations are made to the sweetpotato industry. • Vigorously promote the distinct nutritional and health properties of sweetpotatoes, particularly if they can be favourably compared to other vegetables or foods • Promote the salient properties to specific targets such as diabetics, those that are at risk to bowel cancer, and those embarking on a weight-loss regime. Utilise specialist channels of communication such as diabetic magazines and websites • Promote styles of cooking of sweetpotato that would appeal to traditionalists such as roasts and BBQs • Promote the vegetable as a low maintenance vegetable, easy to store, easy to cook and particularly focusing on it as a simple way to boost the appearance and nutritional value of meals. • Promote the vegetable to high food involvement consumers through exotic recipes and linking it to feelings of accomplishment with cooking • Promote the versatility of the vegetable • Devise promotions that link images and tone of communications with enjoying life to the fullest, having time to enjoy family and grandchildren, and of partaking in social activities • Educate retailers on consumer perceptions of quality and ensuring moisture and mould is not present at displays Qualitative information while providing a wealth of detail cannot be extrapolated to the overall target population and this may be considered a limitation to the research. However, within research theory, effective quantitative design is believed to stem from the insights developed from qualitative studies. • Develop and implement a quantitative study on sweetpotato attitudes and behaviours based on the results of this study.
Resumo:
Eucalyptus argophloia Blakely (Western white gum) has shown potential as a commercial forestry timber species in marginal environments of north-eastern Australia. We measured early pollination success in Eucalyptus argophloia to compare pollination methods, determine the timing of stigma receptivity and compare fresh and stored pollen. Early pollination success was measured by counting pollen tubes in the style of E. argophloia 12 days after pollination. We compared the early pollination success of 1) Artificially Induced Protogyny (AIP), one-stop and three-stop methods of pollination; 2) flowers pollinated at 2 day intervals between 2 days before and 6 days after anthesis and 3) fresh pollen and pollen that had been stored for 9 months. Our results show significantly more pollen tubes from unpollinated AIP and AIP treatments than either the one-stop pollination or three-stop pollination treatments. This indicates that self-pollination occurs in the unpollinated AIP treatment. There was very little pollen tube growth in the one-stop method indicating that the three-stop method is the most suitable for this species. Stigma receptivity in E. argophloia commenced six days after anthesis and no pollen tube growth was observed prior to this. Fresh pollen resulted in pollen tube growth in the style whereas the stored pollen resulted in a total absence of pollen tube growth. We recommend that breeding programs incorporating E. argophloia as a female parent use the three-stop pollination method, and controlled pollination be carried out at least six days after anthesis using fresh pollen.
Resumo:
Rarely is it possible to obtain absolute numbers in free-ranging populations and although various direct and indirect methods are used to estimate abundance, few are validated against populations of known size. In this paper, we apply grounding, calibration and verification methods, used to validate mathematical models, to methods of estimating relative abundance. To illustrate how this might be done, we consider and evaluate the widely applied passive tracking index (PTI) methodology. Using published data, we examine the rationality of PTI methodology, how conceptually animal activity and abundance are related and how alternative methods are subject to similar biases or produce similar abundance estimates and trends. We then attune the method against populations representing a range of densities likely to be encountered in the field. Finally, we compare PTI trends against a prediction that adjacent populations of the same species will have similar abundance values and trends in activity. We show that while PTI abundance estimates are subject to environmental and behavioural stochasticity peculiar to each species, the PTI method and associated variance estimate showed high probability of detection, high precision of abundance values and, generally, low variability between surveys, and suggest that the PTI method applied using this procedure and for these species provides a sensitive and credible index of abundance. This same or similar validation approach can and should be applied to alternative relative abundance methods in order to demonstrate their credibility and justify their use.
Resumo:
Stay-green plants retain green leaves longer after anthesis and can have improved yield, particularly under water limitation. As senescence is a dynamic process, genotypes with different senescence patterns may exhibit similar final normalised difference vegetative index (NDVI). By monitoring NDVI from as early as awn emergence to maturity, we demonstrate that analysing senescence dynamics improves insight into genotypic stay-green variation. A senescence evaluation tool was developed to fit a logistic function to NDVI data and used to analyse data from three environments for a wheat (Triticum aestivum L.) population whose lines contrast for stay-green. Key stay-green traits were estimated including, maximum NDVI, senescence rate and a trait integrating NDVI variation after anthesis, as well as the timing from anthesis to onset, midpoint and conclusion of senescence. The integrative trait and the timing to onset and mid-senescence exhibited high positive correlations with yield and a high heritability in the three studied environments. Senescence rate was correlated with yield in some environments, whereas maximum NDVI was associated with yield in a drought-stressed environment. Where resources preclude frequent measurements, we found that NDVI measurements may be restricted to the period of rapid senescence, but caution is required when dealing with lines of different phenology. In contrast, regular monitoring during the whole period after flowering allows the estimation of senescence dynamics traits that may be reliably compared across genotypes and environments. We anticipate that selection for stay-green traits will enhance genetic progress towards high-yielding, stay-green germplasm.