14 resultados para Plymouth Bay
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The size at recruitment, temporal and spatial distribution, and abiotic factors influencing abundance of three commercially important species of penaeid prawns in the sublittoral trawl grounds of Moreton Bay (Queensland, Australia) were compared. Metapenaeus bennettae and Penaeus plebejus recruit to the trawl grounds at sizes which are relatively small (14-15 mm carapace length, CL) and below that at which prawns are selected for, and retained, in the fleet's cod-ends. In contrast, Penaeus esculenlus recruit at the relatively large size of 27 mm CL from February to May, well above the size ranges selected for. Recruitment of M. bennettae extends over several months, September-October and February March, and was thus likely to be bi-annual, while the recruitment period of P. plebejus was distinct, peaking in October-November each year. Size classes of M . bennettae were the most spatially stratified of the three species. Catch rates of recruits were negatively correlated with depth for all three species, and were also negatively correlated with salinity for M. bennettae.
Resumo:
Spawning stock dynamics of 2 commercially important penaeid prawns, Metapenaeus bennettae and Penaeus esculentus, from 9 stations in Moreton Bay (27°15'S, 153°15'E), southeast Queensland, Australia, were examined. An egg production index (EPI), based on the relative abundance, proportion that were mature or ripe, and size of adult females, was used as a measure of egg production in the 2 populations. Egg production by M. bennettae was 20 to 30 higher than that by P. esculentus, extended over 7 to 8 mo each year and peaked from February to March (late summer to early autumn). Monthly patterns in egg production by M. bennettae varied between years. In contrast, P. esculentus produced most of its eggs in a single, clearly defined peak in October (spring), although production continued to March (early autumn) each year. The seasonal onset and subsequent decline in maturation in P. esculentus were rapid. Egg production by M. bennettae was several times higher at the 5 northern stations than at the 4 southern stations and negatively correlated with salinity during the main spawning period. Egg production by P. esculentus was less varied among stations and positively correlated with depth. P. esculentus appeared more likely than M. bennettae to experience recruitment overfishing because (1) the peak spawning period for P. esculentus was dependent on relatively few adult females spawning over a short period, and (2) the selectivity of trawl nets used in the bay was much higher for P. esculentus spawners than for those of M. bennettae. Compared with more northern populations, P. esculentus in Moreton Bay matured at a larger size, had lower incidences of insemination and mature or ripe females, and had a shorter spawning period. These results suggest the likelihood of recruitment overfishing in P. esculentus increases with increasing latitude.
Resumo:
Large quantities of tailor, Pomatomus saltatrix, are caught by recreational and commercial fishers in coastal waters off New South Wales and Queensland. Juvenile tailor were subject to increasing fishing mortality in Moreton Bay (Queensland) in the mid 1980s. A tagging programme, involving State Government fisheries biologists and amateur fishing clubs, was established in 1986 to examine the movement, growth rate and fisheries exploitation of juvenile tailor (<270 mm fork length) in Moreton Bay. Of 2173 juvenile tailor tagged in Moreton Bay during February-July and December 1987, 237 were recaptured over a period of 30 months, representing a recapture rate of 11%. This was a high recapture rate compared with those in similar finfish tagging studies carried out in Moreton Bay. The recaptured fish moved relatively short distances (mean plus or minus s.d., 10.2 plus or minus 15.0 km; maximum distance, 85 km). Growth data were unreliable. Estuaries such as Moreton Bay function as nursery areas for tailor prior to their movement onto open surf beaches as adult fish. A legal minimum length for tailor was introduced on the basis of this study.
Resumo:
The parasites of some decapod crustaceans are known to cause sterilisation of their hosts, and can thus have an important impact on the population dynamics of infested species. Blue swimmer crabs (Portunus pelagicus) collected in three areas around Moreton Bay, Australia were examined for the presence of epizoic barnacles in their branchial chambers and on their carapace. Of the 952 crabs inspected 92% were infested with Octolasmis spp. The mean number of barnacles (predominantly Octolasmis warwickii) per carapace and gill chamber (mainly O. angulata) were 2.35 and 71.1, respectively. Barnacle infestation of gills was found to differ significantly by area, season and sex with the deeper offshore areas exhibiting the highest number of barnacles. The distribution within the hosts showed barnacles were more likely to be distributed in areas closer to the inhalant aperture. Highest abundances were found on the proximal surface of the hypobranchial side of gills 3, 4 and 5. Host moult stage and parasitism by Sacculina granifera were also found to affect the abundance of epizoic barnacles in some areas.
Resumo:
Protection of coastal wetland environments is an important prerequisite to effective and sustainable inshore fisheries management and conservation of habitats for use by future generations. Mangroves, saltmarshes, seagrasses and non vegetated habitats directly support local and regional inshore and offshore fisheries through the provision of food, shelter, breeding and nursery grounds. As such, these wetland environments have significant economic value as well as their intrinsic aesthetic and ecological values. This report summarises the results of the mapping undertaken in the Central Queensland Coast from Sand Bay to Keppel Bay (hereafter referred to as the Study Area). The study was undertaken in order to: 1. document and map the coastal wetland communities along the Queensland coastline from Sand Bay (20.93°S, 149.04°E) to Keppel Bay (23.65°S, 151.07°E); 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
This report provides key resource data for the ongoing assessment of the requirement for additional Marine Protected Areas (e.g. FHAs under the Queensland Fisheries Act 1994) in regions of high fish habitat value in northern Queensland from Cape Tribulation to Bowling Green Bay (hereafter referred to as the Study Area). The study also provides baseline information on the coastal wetlands within this Study Area for consideration in the Ramsar site nomination process. The Study Area extends from Cape Tribulation (16o 6’S, 145o 24’E) to Bowling Green Bay (19o 30’S, 147o 24’E) in tropical north Queensland. The project aimed to: 1. document and map the coastal wetland communities of the Study Area; 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational, indigenous and commercial fisheries resources in the region; 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species for future FHA/MPA declaration. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.
Resumo:
This analysis of the variations of brown tiger prawn (Penaeus esculentus) catch in Moreton Bay multispecies trawl fishery estimated catchability using a delay difference model. It integrated several factors responsible for variations in catchability: targeting of fishing effort, increasing fishing power and changing availability. An analysis of covariance was used to define fishing events targeted at brown tiger prawns. A general linear model estimated inter-annual variations of fishing power. Temperature-induced changes in prawn behaviour played an important role on the dynamics of this fishery. Maximum likelihood estimates of targeted catchability (4.09 ± 0.42 × 10−4 boat-day−1) were twice as large as non-targeted catchability (1.86 ± 0.25 × 10−4 boat-day−1). The causes of recent declines in fishing effort in this fishery were discussed.
Resumo:
Deriving an estimate of optimal fishing effort or even an approximate estimate is very valuable for managing fisheries with multiple target species. The most challenging task associated with this is allocating effort to individual species when only the total effort is recorded. Spatial information on the distribution of each species within a fishery can be used to justify the allocations, but often such information is not available. To determine the long-term overall effort required to achieve maximum sustainable yield (MSY) and maximum economic yield (MEY), we consider three methods for allocating effort: (i) optimal allocation, which optimally allocates effort among target species; (ii) fixed proportions, which chooses proportions based on past catch data; and (iii) economic allocation, which splits effort based on the expected catch value of each species. Determining the overall fishing effort required to achieve these management objectives is a maximizing problem subject to constraints due to economic and social considerations. We illustrated the approaches using a case study of the Moreton Bay Prawn Trawl Fishery in Queensland (Australia). The results were consistent across the three methods. Importantly, our analysis demonstrated the optimal total effort was very sensitive to daily fishing costs—the effort ranged from 9500–11 500 to 6000–7000, 4000 and 2500 boat-days, using daily cost estimates of $0, $500, $750, and $950, respectively. The zero daily cost corresponds to the MSY, while a daily cost of $750 most closely represents the actual present fishing cost. Given the recent debate on which costs should be factored into the analyses for deriving MEY, our findings highlight the importance of including an appropriate cost function for practical management advice. The approaches developed here could be applied to other multispecies fisheries where only aggregated fishing effort data are recorded, as the literature on this type of modelling is sparse.
Resumo:
It is common to model the dynamics of fisheries using natural and fishing mortality rates estimated independently using two separate analyses. Fishing mortality is routinely estimated from widely available logbook data, whereas natural mortality estimations have often required more specific, less frequently available, data. However, in the case of the fishery for brown tiger prawn (Penaeus esculentus) in Moreton Bay, both fishing and natural mortality rates have been estimated from logbook data. The present work extended the fishing mortality model to incorporate an eco-physiological response of tiger prawn to temperature, and allowed recruitment timing to vary from year to year. These ecological characteristics of the dynamics of this fishery were ignored in the separate model that estimated natural mortality. Therefore, we propose to estimate both natural and fishing mortality rates within a single model using a consistent set of hypotheses. This approach was applied to Moreton Bay brown tiger prawn data collected between 1990 and 2010. Natural mortality was estimated by maximum likelihood to be equal to 0.032 ± 0.002 week−1, approximately 30% lower than the fixed value used in previous models of this fishery (0.045 week−1).