12 resultados para Plutella xylostella (Linnaeus 1758)
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Field surveys of egg parasitoids of the diamondback moth, Plutella xylostella, were conducted at Redlands and Gatton, south-east Queensland. Eggs of P. xylostella were present all year round in both localities, and parasitized eggs were consistently found between late spring and early winter. Percent parasitism in the range 30–75% was recorded on many occasions, although rates less than 10% were more common. The major parasitoids included Trichogrammatoidea bactrae Nagaraja and Trichogramma pretiosum Riley. Laboratory evaluation showed that the T. pretiosum from Gatton has a high capacity to parasitize P. xylostella eggs under suitable conditions. This study represents the first record of egg parasitoids of P. xylostella from Australia.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers
Resumo:
We evaluated the role of the larval parasitoid, Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae), in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae) by cage exclusion experiments and direct field observation during the winter season in southern Queensland, Australia. The cage exclusion experiment involved uncaged, open cage and closed cage treatments. A higher percentage (54-83%) of P. xylostella larvae on sentinel plants were lost in the uncaged treatment than the closed (4-9%) or open cage treatments (11-29%). Of the larvae that remained in the uncaged treatment, 72-94% were parasitized by D. semiclausum, much higher than that in the open cage treatment (8-37% in first trial, and 38-63% in second trial). Direct observations showed a significant aggregation response of the field D. semiclausum populations to high host density plants in an experimental plot and to high host density plots that were artificially set-up near to the parasitoid source fields. The degree of aggregation varied in response to habitat quality of the parasitoid source field and scales of the manipulated host patches. As a result, density-dependence in the pattern of parasitism may depend on the relative degree of aggregation of the parasitoid population at a particular scale. A high degree of aggregation seems to be necessary to generate density-dependent parasitism by D. semiclausum. Integration of the cage exclusion experiment and direct observation demonstrated the active and dominant role of this parasitoid in controlling P. xylostella in the winter season. A biologically based IPM strategy, which incorporates the use of D. semiclausum with Bt, is suggested for the management of P. xylostella in seasons or regions with a mild temperature.
Resumo:
Spiders are thought to play a significant role in limiting pest outbreaks in agroecosystems such as vineyards, orchards and cotton. The diversity and impact of spiders in vegetable crops are less well understood, although there is evidence that predators may be important for suppression of lepidopteran pests in Brassica crops, particularly early in the season before parasitoids become established. Sampling was conducted in early season plantings of Brassicas in the Lockyer Valley (South East Queensland, Australia) in order to determine the most commonly occurring spider families. The most numerous were Theridiidae, which were more strongly associated with cauliflower and poorly associated with cabbage. The Lycosidae and Clubionidae/Miturgidae (formerly in the ‘catch-all’ family Clubionidae) also occurred commonly. Lycosidae (and to a lesser extent Salticidae) had above average abundance in Chinese cabbage and below average abundance in broccoli compared with average abundance for these spider families; Clubionidae/Miturgidae had above average abundance in cauliflower. Laboratory studies were then conducted to explore the predatory capacity of these three most commonly occurring spider families. All three were capable of feeding on larvae of the diamondback moth, Plutella xylostella (Linnaeus), and cabbage cluster caterpillar, Crocidolomia pavonana (Fabricius), under laboratory conditions. Theridiidae, which are thought to prey on small pests such as leafhoppers and aphids, were able to successfully attack larvae up to five times their body size. Predation rates varied from an average of 1.7 (SE = 0.47) (1.6 control corrected) larvae consumed over a 24 h period in the case of the Theridiidae, to 3.3 (SE = 0.60) larvae for the Clubionidae/Miturgidae.
Resumo:
One of the loci responsible for strong phosphine resistance encodes dihydrolipoamide dehydrogenase (DLD). The strong co-incidence of enzyme complexes that contain DLD, and enzymes that require thiamine as a cofactor, motivated us to test whether the thiamine deficiency of polished white rice could influence the efficacy of phosphine fumigation against insect pests of stored grain. Three strains of Sitophilus oryzae (susceptible, weak and strong resistance) were cultured on white rice (thiamine deficient), brown rice or whole wheat. As thiamine is an essential nutrient, we firstly evaluated the effect of white rice on developmental rate and fecundity and found that both were detrimentally affected by this diet. The mean time to reach adult stage for the three strains ranged from 40 to 43 days on brown rice and 50–52 days on white rice. The mean number of offspring for the three strains ranged from 7.7 to 10.3 per female over a three day period on brown rice and 2.1 to 2.6 on white rice. Growth and reproduction on wheat was similar to that on brown rice except that the strongly resistant strain showed a tendency toward reduced fecundity on wheat. The susceptible strain exhibited a modest increase in tolerance to phosphine on white rice as expected if thiamine deficiency could mimic the effect of the dld resistance mutation at the rph2 locus. The strongly resistant strain did not respond to thiamine deficiency, but this was expected as these insects are already strongly resistant. We failed, however, to observe the expected synergistic increase in resistance due to combining thiamine deficiency with the weakly resistant strain. The lack of interaction between thiamine content of the diet and the resistance genotype in determining the phosphine resistance phenotype suggests that the mode of inhibition of the complexes is a critical determinant of resistance.
Resumo:
Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The Population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly oil four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed Mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted significantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hubner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to attract and increase beneficial insects and spiders for the control of sap-sucking insect pests. Use of these bio-control strategies affords the opportunity to minimise pesticide usage and the risks associated with pollution.
Resumo:
Vegetative propagation programs internationally are affected by the significant decline of rooting success as trees mature. This study compared the cellular stages of root formation in stem cuttings from 15-week-old (juvenile) and 9-y-old (mature) stock plants of the slash x Caribbean pine hybrid (Pinus elliottii var. elliottii x P. caribaea van hondurensis). The cellular stages of root formation were the same in both juvenile and mature cuttings, beginning with cell divisions of the vascular cambium forming callus tissue. Within the callus, tracheids differentiated and elongated to form root primordia. Roots in juvenile cuttings developed faster than those in mature cuttings and the juvenile cuttings had a much higher rooting percent at the end of the study (92% and 26% respectively). Cuttings of the two juvenile genotypes had more primary roots (5.5 and 3.3) than the three mature genotypes (0.96, 0.18 and 0.07). The roots of juvenile cuttings were more evenly distributed around the basal circumference when compared with those on cuttings from the mature genotypes. Further work is needed to improve understanding of physiological changes with maturation so that the rooting success and the speed of development in cuttings from mature stock plants can be optimised, hence improving genetic gain.
Resumo:
Statistical studies of rainfed maize yields in the United States(1) and elsewhere(2) have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30 degrees C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2 degrees C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.
Resumo:
Bactrocera cucumis (French 1907), the ‘cucumber fruit fly’, is a horticultural pest in Australia that primarily infests cucurbits and has also been recorded from tomatoes, papaw and several other hosts. It does not respond to known male lures, cue-lure and methyl eugenol, making monitoring and control difficult. A cucumber volatile blend lure was recently developed in Hawaii and found to be an effective female-biased attractant for the melon fly B. cucurbitae. This lure was field tested in north Queensland, Australia in McPhail traps in comparison with orange ammonia, Cera Trap® and a control, and was found to more consistently trap B. cucumis than the other lures. B. cucumis were caught at 41% of the cucumber volatile lure trap clearances, compared with 27% of the orange ammonia, 18% of the Cera Trap and 16% of the control trap clearances. The cucumber volatile lure was more attractive to B. cucumis in low population densities and also trapped B. cucumis earlier on average than the other lures. Data analysed from the site with highest trap catches (Spring Creek) showed that the cucumber volatile lure caught significantly more B. cucumis than the other traps in four of the 11 trap clearance periods, and for the remaining clearances, no other trap type caught significantly more flies than the cucumber volatile lure. The cucumber volatile lure had a strong female-biased attraction but it was not significantly more female-biased than orange ammonia or Cera Trap. Cucumber volatile lure traps were cleaner to service resulting in better quality specimens than the orange ammonia trap or Cera Trap. These findings have potential implications for market access monitoring for determining pest freedom, and for biosecurity monitoring programmes in other countries that wish to detect B. cucumis early.
Resumo:
Sitophilus oryzae (Linnaeus) is a major pest of stored grain across Southeast Asia and is of increasing concern in other regions due to the advent of strong resistance to phosphine, the fumigant used to protect stored grain from pest insects. We investigated the inheritance of genes controlling resistance to phosphine in a strongly resistant S. oryzae strain (NNSO7525) collected in Australia and find that the trait is autosomally inherited and incompletely recessive with a degree of dominance of -0.66. The strongly resistant strain has an LC50 52 times greater than a susceptible reference strain (LS2) and 9 times greater than a weakly resistant strain (QSO335). Analysis of F2 and backcross progeny indicates that two or more genes are responsible for strong resistance, and that one of these genes, designated Sorph1, not only contributes to strong resistance, but is also responsible for the weak resistance phenotype of strain QSO335. These results demonstrate that the genetic mechanism of phosphine resistance in Soryzae is similar to that of other stored product insect pests. A unique observation is that a subset of the progeny of an F1 backcross generation are more strongly resistant to phosphine than the parental strongly resistant strain, which may be caused by multiple alleles of one of the resistance genes.
Resumo:
Bactrocera frauenfeldi (Schiner), the ‘mango fruit fly’, is a horticultural pest originating from the Papua New Guinea region. It was first detected in Australia on Cape York Peninsula in north Queensland in 1974 and had spread to Cairns by 1994 and Townsville by 1997. Bactrocera frauenfeldi has not been recorded further south since then despite its invasive potential, an absence of any controls and an abundance of hosts in southern areas. Analysis of cue-lure trapping data from 1997 to 2012 in relation to environmental variables shows that the distribution of B. frauenfeldi in Queensland correlates to locations with a minimum temperature for the coldest month >13.2°C, annual temperature range <19.3°C, mean temperature of the driest quarter >20.2°C, precipitation of the wettest month >268 mm, precipitation of the wettest quarter >697 mm, temperature seasonality <30.9°C (i.e. lower temperature variability) and areas with higher human population per square kilometre. Annual temperature range was the most important variable in predicting this species' distribution. Predictive distribution maps based on an uncorrelated subset of these variables reasonably reflected the current distribution of this species in northern Australia and predicted other areas in the world potentially at risk from invasion by this species. This analysis shows that the distribution of B. frauenfeldi in Australia is correlated to certain environmental variables that have most likely limited this species' spread southward in Queensland. This is of importance to Australian horticulture in demonstrating that B. frauenfeldi is unlikely to establish in horticultural production areas further south than Townsville.
Resumo:
Male fruit fly attractants, cue-lure and methyl eugenol (ME), have been successfully used for the last 50 years in the monitoring and control of Dacini fruit flies (Bactrocera and Dacus species). However, over 50% of Dacini are non-responsive to either lure, including some pest species. A new lure, zingerone, has been found to weakly attract cue- and ME-responsive species in Malaysia. In Australia it attracted a weakly cue-responsive minor pest Bactrocera jarvisi (Tryon) and three non-responsive' species. Similar compounds were tested in Queensland and attracted cue- and ME-responsive species and two non-responsive' species. In this study, 14 novel compounds, including raspberry ketone formate (RKF) (Melolure) and zingerone, were field tested in comparison with cue-lure and ME at 17 sites in north Queensland. The most attractive novel lures were isoeugenol, methyl-isoeugenol, dihydroeugenol and zingerone. Several non-responsive' species responded to the new lures: Bactrocera halfordiae (Tryon), a species of some market access concern, was most attracted to isoeugenol; B.barringtoniae (Tryon), B.bidentata (May) and B.murrayi (Perkins) responded to isoeugenol, methyl-isoeugenol and dihydroeugenol; two new species of Dacus responded to zingerone. Bactrocera kraussi (Hardy), a cue-responsive minor pest in north Queensland, was significantly more attracted to isoeugenol than cue-lure. The cue-responsive D.absonifacies (May) and D.secamoneaeDrew were significantly more attracted to zingerone than cue-lure. Bactrocera yorkensisDrew & Hancock, a ME-responsive species was significantly more attracted to isoeugenol, methyl-isoeugenol and dihydroeugenol than ME. The preferential response to RKF or cue-lure was species specific. Six species were significantly more attracted to RKF, including the pests B.tryoni (Froggatt), B.frauenfeldi (Schiner) and minor pest B.bryoniae (Tryon); eight species were significantly more attracted to cue-lure including the pest B.neohumeralis (Hardy). These findings have significance in the search for optimal male lures for pest species elsewhere in the world.