14 resultados para Plasticity.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the idea that plasticity in farm management introduces resilience to change and allows farm businesses to perform when operating in highly variable environments. We also argue for the need to develop and apply more integrative assessments of farm performance that combine the use of modelling tools with deliberative processes involving farmers and researchers in a co-learning process, to more effectively identify and implement more productive and resilient farm businesses. In a plastic farming system, farm management is highly contingent on environmental conditions. In plastic farming systems farm managers constantly vary crops and inputs based on the availability of limited and variable resources (e.g. land, water, finances, labour, machinery, etc.), and signals from its operating environment (e.g. climate, markets), with the objective of maximising a number of, often competing, objectives (e.g. maximise profits, minimise risks, etc.). In contrast in more rigid farming systems farm management is more calendar driven and relatively fixed sequences of crops are regularly followed over time and across the farm. Here we describe the application of a whole farm simulation model to (i) compare, in silico, the sensitivity of two farming systems designs of contrasting levels of plasticity, operating in two contrasting environments, when exposed to a stressor in the form of climate change scenarios;(ii) investigate the presence of interactions and feedbacks at the field and farm levels capable of modifying the intensity and direction of the responses to climate signals; and (iii) discuss the need for the development and application of more integrative assessments in the analysis of impacts and adaptation options to climate change. In both environments, the more plastic farm management strategy had higher median profits and was less risky for the baseline and less intensive climate change scenarios (2030). However, for the more severe climate change scenarios (2070), the benefit of plastic strategies tended to disappear. These results suggest that, to a point, farming systems having higher levels of plasticity would enable farmers to more effectively respond to climate shifts, thus ensuring the economic viability of the farm business. Though, as the intensity of the stress increases (e.g. 2070 climate change scenario) more significant changes in the farming system might be required to adapt. We also found that in the case studies analysed here, most of the impacts from the climate change scenarios on farm profit and economic risk originated from important reductions in cropping intensity and changes in crop mix rather than from changes in the yields of individual crops. Changes in cropping intensity and crop mix were explained by the combination of reductions in the number of sowing opportunities around critical times in the cropping calendar, and to operational constraints at the whole farm level i.e. limited work capacity in an environment having fewer and more concentrated sowing opportunities. This indicates that indirect impacts from shifts in climate on farm operations can be more important than direct impacts from climate on the yield of individual crops. The results suggest that due to the complexity of farm businesses, impact assessments and opportunities for adaptation to climate change might also need to be pursued at higher integration levels than the crop or the field. We conclude that plasticity can be a desirable characteristic in farming systems operating in highly variable environments, and that integrated whole farm systems analyses of impacts and adaptation to climate change are required to identify important interactions between farm management decision rules, availability of resources, and farmer's preference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 mu mol photons m(-2) s(-1). Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal–stomatal traits, leaf internal anatomy, and physiological performance.• Methods: Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Key results: Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the establishment of provenance seedling seed orchards of three spotted gums and cadaga (all species of Corymbia ex Eucalyptus). It also discusses the limitations of growing the spotted gums as pure species including: lack of mass flowering, susceptibility to a fungal shoot blight and low amenability to vegetative propagation. These limitations, together with observation of putative natural hybrids of the spotted gums with cadaga, and the early promise of manipulated hybrids, led to an intensive breeding and testing program. Many hybrid families have significant advantages in growth and tolerance to disease, insects and frost, and can be vegetatively propagated. They also exhibit broad environmental plasticity, allowing the best varieties to be planted across a wider range of sites than the spotted gums, resulting in more land being suitable for plantation development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development - the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 mu mol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated whether plasticity in growth responses to nutrients could predict invasive potential in aquatic plants by measuring the effects of nutrients on growth of eight non-invasive native and six invasive exotic aquatic plant species. Nutrients were applied at two levels, approximating those found in urbanized and relatively undisturbed catchments, respectively. To identify systematic differences between invasive and non-invasive species, we compared the growth responses (total biomass, root:shoot allocation, and photosynthetic surface area) of native species with those of related invasive species after 13 weeks growth. The results were used to seek evidence of invasive potential among four recently naturalized species. There was evidence that invasive species tend to accumulate more biomass than native species (P = 0.0788). Root:shoot allocation did not differ between native and invasive plant species, nor was allocation affected by nutrient addition. However, the photosynthetic surface area of invasive species tended to increase with nutrients, whereas it did not among native species (P = 0.0658). Of the four recently naturalized species, Hydrocleys nymphoides showed the same nutrient-related plasticity in photosynthetic area displayed by known invasive species. Cyperus papyrus showed a strong reduction in photosynthetic area with increased nutrients. H. nymphoides and C. papyrus also accumulated more biomass than their native relatives. H. nymphoides possesses both of the traits we found to be associated with invasiveness, and should thus be regarded as likely to be invasive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reproductive biology of two invasive tilapia species, Oreochromis mossambicus and Tilapia mariae, resident in freshwater habitats in north-eastern Australia was investigated. Oreochromis mossambicus exhibited plasticity in some of its life-history characteristics that enhanced its ability to occupy a range of habitats. These included a shallow, weed-choked, freshwater coastal drain that was subject to temperature and dissolved oxygen extremes and water-level fluctuations to cooler, relatively high-altitude impoundments. Adaptations to harsher conditions included a decreased total length (LT) and age ( A) at 50% maturity (m50), short somatic growth intervals, early maturation and higher relative fecundities. Potential fecundity in both species was relatively low, but parental care ensured high survival rates of both eggs and larvae. No significant difference in the relative fecundity of T. mariae populations in a large impoundment and a coastal river was found, but there were significant differences in relative fecundities between several of the O. mossambicus populations sampled. Total length ( LT) and age at 50% maturity of O. mossambicus populations varied considerably depending on habitat. The LTm50 and Am50 values for male and female O. mossambicus in a large impoundment were considerably greater than for those resident in a small coastal drain. Monthly gonad developmental stages and gonado-somatic indices suggested that in coastal areas, spawning of O. mossambicus and T. mariae occurred throughout most of the year while in cooler, high-altitude impoundments, spawning peaked in the warmer, summer months. The contribution these reproductive characteristics make to the success of both species as colonizers is discussed in the context of future control and management options for tilapia incursions in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).