6 resultados para Plants, Effect of insecticides on
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The effect of fungal endophyte (Neotyphodium lolii) infection on the performance of perennial ryegrass (Lolium perenne) growing under irrigation in a subtropical environment was investigated. Seed of 4 cultivars, infected with standard (common toxic or wild-type) endophyte or the novel endophyte AR1, or free of endophyte (Nil), was sown in pure swards, which were fertilised with 50 kg N/ha.month. Seasonal and total yield, persistence, and rust susceptibility were assessed over 3 years, along with details of the presence of endophyte and alkaloids in plant shoots. Endophyte occurrence in tillers in both the standard and AR1 treatments was above 95% for Bronsyn and Impact throughout and rose to that level in Samson by the end of the second year. Meridian AR1 only reached 93% while, in the standard treatment, the endophyte had mostly died before sowing. Nil Zendophyte treatments carried an average of ?0.6% infection throughout. Infection of the standard endophyte was associated with increased dry matter (DM) yields in all 3 years compared with no endophyte. AR1 also significantly increased yields in the second and third years. Over the full 3 years, standard and AR1 increased yields by 18% and 11%, respectively. Infection with both endophytes was associated with increased yields in all 4 seasons, the effects increasing in intensity over time. There was 27% better persistence in standard infected plants compared with Nil at the end of the first year, increasing to 198% by the end of the experiment, while for AR1 the improvements were 20 and 134%, respectively. The effect of endophyte on crown rust (Puccinia coronata) infection was inconsistent, with endophyte increasing rust damage on one occasion and reducing it on another. Cultivar differences in rust infection were greater than endophyte effects. Plants infected with the AR1 endophyte had no detectable ergovaline or lolitrem B in leaf, pseudostem, or dead tissue. In standard infected plants, ergovaline and lolitrem B were highest in pseudostem and considerably lower in leaf. Dead tissue had very low or no detectable ergovaline but high lolitrem B concentrations. Peramine concentration was high and at similar levels in leaf and pseudostem, but not detectable in dead material. Concentration was similar in both AR1 and standard infected plants. Endophyte presence appeared to have a similar effect in the subtropics as has been demonstrated in temperate areas, in terms of improving yields and persistence and increasing tolerance of plants to stress factors.
Resumo:
Prostate cancer is common in men with very high mortality which is one of leading causes of cancer-related deaths in men. The main treatment approaches for metastasized prostate cancer are androgen deprivation and chemotherapeutic agents. Although there are initial responses to castration, the resistance to the treatment will eventually occur, leading to castration-resistant prostate cancer. The common chemotherapeutic agents for the treatment of prostate cancer are docetaxel and taxane but outcomes of using these drugs have not been satisfactory. Therefore, it is necessary to find better treatment approaches for prostate cancer and to search for compounds that are effective in prostate cancer prevention. Lycopene extracted from tomato and other fruits or plants such as Gac, watermelon, pink grapefruit, pink guava, red carrot and papaya has been shown to be effective on prostate cancer prevention and treatment. The advantage of the application of lycopene for its anti-prostate cancer activity is that lycopene can reach much higher concentration in prostate tissue than other tissues. In this review, the effect of lycopene on PI3K/Akt pathway is summarised, which could be one of major mechanisms for anti-cancer activity of lycopene.
Resumo:
Near-ripe ‘Kensington Pride’ mango (Mangifera indica L.) fruit with green skin colour generally return lower wholesale and retail prices. Pre-harvest management, especially nitrogen (N) nutrition, appears to be a major causal factor. To obtain an understanding of the extent of the problem in the Burdekin district (dry tropics; the major production area in Australia), green mature ‘Kensington Pride’ mango fruit were harvested from ten orchards and ripened at 20 ± 0.5 O C. Of these orchards, 70% produced fruit with more than 25% of the skin surface area green when ripe. The following year, the effect of N application on skin colour and other quality attributes was investigated on three orchards, one with a high green (HG) skin problem and two with a low green (LG) skin problem. N was applied at pre-flowering and at panicle emergence at the rate of 0,75,150,300 g per tree (soil applied) or 50 g per tree as foliar N for the HG orchard, and 0,150,300,450 g per tree (soil applied) or 50 g per tree (foliar) for the LG orchards. In all orchards the proportion of green colour on the ripe fruit was significantly (P<0.05) higher with soil applications of 150 g N or more per tree. Foliar sprays resulted in a higher proportion of green colour than the highest soil treatment in the HG orchard, but not in the LG orchards. Anthracnose disease severity was significantly (P<0.05) higher with 300 g of N per tree or foliar treatment in the HG orchard, compared with no additional N. Thus, N can reduce mango fruit quality by increasing green colour and anthracnose disease in ripe fruit.
Resumo:
Traps baited with synthetic aggregation pheromones of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus davidsoni Dobson and fermenting bread dough were used to identify the fauna and monitor the seasonal abundance of Carpophilus spp. in insecticide treated peach and nectarine orchards in the Gosford area of coastal New South Wales. In four orchards 67 178 beetles were trapped during 1994–1995, with C. davidsoni (82%) and Carpophilus gaveni (Dobson) (12.2%) dominating catches. Five species (C. hemipterus, C. mutilatus, Carpophilus marginellus Motschulsky, Carpophilus humeralis (F.) and an unidentified species) each accounted for 0.2–3.2% of trapped beetles. Carpophilus davidsoni was most abundant during late September–early October but numbers declined rapidly during October, usually before insecticides were applied. Spring populations of Carpophilus spp. were very large in 1994–1995 (1843–2588 per trap per week). However, despite a preharvest population decline of approximately 95% and 2–11 applications of insecticide, 14–545 beetles per trap per week (above the arbitrary fruit damage threshold of 10 beetles per trap per week) were recorded during the harvest period and fruit damage occurred at three of the four orchards. Lower preharvest populations in 1995–1996 (< 600 per trap per week) and up to six applications of insecticide resulted in < 10 beetles per trap per week during most of the harvest period and minimal or no fruit damage. The implications of these results for the integrated management of Carpophilus spp. in coastal and inland areas of southeastern Australia are discussed.
Resumo:
Abstract In weed biocontrol, similarity of abiotic factors between the native and introduced range of a biocontrol agent is critical to its establishment and effectiveness. This is particularly the case for weeds that have a wide geographical distribution in the native range. For such weeds, the choice of a specialist insect that has narrow tolerance limits to important abiotic factors can diminish its ability to be an effective biocontrol agent. The membracid Aconophora compressa was introduced in Australia from Mexico for biocontrol of Lantana camara, a plant with a wide climatic tolerance. In this study we investigated the effect of constant and alternating temperatures on A. compressa survival. Longevity of adults and nymphs declined with increasing temperatures, and at 39°C individuals survived for less than a day. At lower temperatures, nymphs survived longer than adults. Survival at alternating temperatures was longer than at constant temperatures, but the general trend of lower survival at higher temperatures remained. Spatially and temporally, the climatic tolerance of A. compressa appears to be a subset of that of lantana, thereby limiting its potential impact.