23 resultados para Plant data
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
Graminicolous downy mildews (GDM) are an understudied, yet economically important, group of plant pathogens, which are one of the major constraints to poaceous crops in the tropics and subtropics. Here we present a first molecular phylogeny based on cox2 sequences comprising all genera of the GDM currently accepted, with both lasting (Graminivora, Poakatesthia, and Viennotia) and evanescent (Peronosclerospora, Sclerophthora, and Sclerospora) sporangiophores. In addition, all other downy mildew genera currently accepted, as well as a representative sample of other oomycete taxa, have been included. It was shown that all genera of the GDM have had a long, independent evolutionary history, and that the delineation between Peronosclerospora and Sclerospora is correct. Sclerophthora was found to be a particularly divergent taxon nested within a paraphyletic Phytophthora, but without support. The results confirm that the placement of Peronosclerospora and Sclerospora in the Saprolegniomycetidae is incorrect. Sclerophthora is not closely related to Pachymetra of the family Verrucalvaceae, and also does not belong to the Saprolegniomycetidae, but shows close affinities to the Peronosporaceae. In addition, all GDM are interspersed throughout the Peronosporaceae s lat., suggesting that a separate family for the Sclerosporaceae might not be justified.
Resumo:
Background: Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots) to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error) was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT) and ordered distance methods have been the subjects of optimization studies. Results: An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT) method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Conclusion: Plotless density estimators can provide an estimate of density in situations where it would not be practical to layout a plot or quadrat and can in many cases reduce the workload in the field.
Resumo:
Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.
Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids
Resumo:
To protect terrestrial ecosystems and humans from contaminants many countries and jurisdictions have developed soil quality guidelines (SQGs). This study proposes a new framework to derive SQGs and guidelines for amended soils and uses a case study based on phytotoxicity data of copper (Cu) and zinc (Zn) from field studies to illustrate how the framework could be applied. The proposed framework uses normalisation relationships to account for the effects of soil properties on toxicity data followed by a species sensitivity distribution (SSD) method to calculate a soil added contaminant limit (soil ACL) for a standard soil. The normalisation equations are then used to calculate soil ACLs for other soils. A soil amendment availability factor (SAAF) is then calculated as the toxicity and bioavailability of pure contaminants and contaminants in amendments can be different. The SAAF is used to modify soil ACLs to ACLs for amended soils. The framework was then used to calculate soil ACLs for copper (Cu) and zinc (Zn). For soils with pH of 4-8 and OC content of 1-6%, the ACLs range from 8 mg/kg to 970 mg/kg added Cu. The SAAF for Cu was pH dependant and varied from 1.44 at pH 4 to 2.15 at pH 8. For soils with pH of 4-8 and OC content of 1-6%, the ACLs for amended soils range from 11 mg/kg to 2080 mg/kg added Cu. For soils with pH of 4-8 and a CEC from 5-60, the ACLs for Zn ranged from 21 to 1470 mg/kg added Zn. A SAAF of one was used for Zn as it concentrations in plant tissue and soil to water partitioning showed no difference between biosolids and soluble Zn salt treatments, indicating that Zn from biosolids and Zn salts are equally bioavailable to plants.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
Stay-green, an important trait for grain yield of sorghum grown under water limitation, has been associated with a high leaf nitrogen content at the start of grain filling. This study quantifies the N demand of leaves and stems and explores effects of N stress on the N balance of vegetative plant parts of three sorghum hybrids differing in potential crop height. The hybrids were grown under well-watered conditions at three levels of N supply. Vertical profiles of biomass and N% of leaves and stems, together with leaf size and number, and specific leaf nitrogen (SLN), were measured at regular intervals. The hybrids had similar minimum but different critical and maximum SLN, associated with differences in leaf size and N partitioning, the latter associated with differences in plant height. N demand of expanding new leaves was represented by critical SLN, and structural stem N demand by minimum stem N%. The fraction of N partitioned to leaf blades increased under N stress. A framework for N dynamics of leaves and stems is developed that captures effects of N stress and genotype on N partitioning and on critical and maximum SLN.
Resumo:
A microplate assay was modified for the detection of antimicrobial activity in plant extracts. The aim was to develop an in vitro assay that could rapidly screen plant extracts to provide quantitative data on inhibition of microbial growth. A spectrophotometric assay using a microplate with serial dilutions of the plant extract and the bacteria was developed. Two bacteria, Staphylococcus aureus and Escherichia coli, were used for this study. Essential oils, oregano (Origanum vulgare) and lemon myrtle (Backhousia citriodora), and three active components carvacrol, thymol and citral were evaluated. The reproducibility of the assay was high, with correlation coefficients (r aureus and E. coli between 0.9321 and 0.9816. Similarly, r and 0.9814. This assay could also be used to measure antimicrobial activity in plant extracts which vary in pH and color.
Resumo:
Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.
Resumo:
Understanding plant demography and plant response to herbivory is critical to the selection of effective weed biological control agents. We adopt the metaphor of 'filters' to suggest how agent prioritisation may be improved to narrow our choices down to those likely to be most effective in achieving the desired weed management outcome. Models can serve to capture our level of knowledge (or ignorance) about our study system and we illustrate how one type of modelling approach (matrix models) may be useful in identifying the weak link in a plant life cycle by using a hypothetical and an actual weed example (Parkinsonia aculeata). Once the vulnerable stage has been identified we propose that studying plant response to herbivory (simulated and/or actual) can help identify the guilds of herbivores to which a plant is most likely to succumb. Taking only potentially effective agents through the filter of host specificity may improve the chances of releasing safe and effective agents. The methods we outline may not always lead us definitively to the successful agent(s), but such an empirical, data-driven approach will make the basis for agent selection explicit and serve as testable hypotheses once agents are released.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.
Resumo:
In Queensland the subtropical strawberry ( Fragaria * ananassa) breeding program aims to combine traits into novel genotypes that increase production efficiency. The contribution of individual plant traits to cost and income under subtropical Queensland conditions was investigated, with the overall goal of improving the profitability of the industry through the release of new strawberry cultivars. The study involved specifying the production and marketing system using three cultivars of strawberry that are currently widely grown annually in southeast Queensland, developing methods to assess the economic impact of changes to the system, and identifying plant traits that influence outcomes from the system. From May through September P (price; $ punnet -1), V (monthly mass; tonne of fruit on the market) and M (calendar month; i.e. May=5) were found to be related ( r2=0.92) by the function (SE) P=4.741(0.469)-0.001630(0.0005) V-0.226(0.102) M using data from 2006 to 2010 for the Brisbane central market. Both income and cost elements in the gross margin were subject to sensitivity analysis. 'Harvesting' and 'Handling/Packing' 'Groups' of 'Activities' were the major contributors to variable costs (each >20%) in the gross margin analysis. Within the 'Harvesting Group', the 'Picking Activity' contributed most (>80%) with the trait 'display of fruit' having the greatest (33%) influence on the cost of the 'Picking Activity'. Within the 'Handling/Packing Group', the 'Packing Activity' contributed 50% of costs with the traits 'fruit shape', 'fruit size variation' and 'resistance to bruising' having the greatest (12-62%) influence on the cost of the 'Packing Activity'. Non-plant items (e.g. carton purchases) made up the other 50% of the costs within the 'Handling/Packing Group'. When any of the individual traits in the 'Harvesting' and 'Handling/Packing' groups were changed by one unit (on a 1-9 scale) the gross margin changed by up to 1%. Increasing yield increased the gross margin to a maximum (15% above present) at 1320 g plant -1 (94% above present). A 10% redistribution of total yield from September to May increased the gross margin by 23%. Increasing fruit size increased gross margin: a 75% increase in fruit size (to ~30 g) produced a 22% increase in the gross margin. The modified gross margin analysis developed in this study allowed simultaneous estimation of the gross margin for the producer and gross value of the industry. These parameters sometimes move in opposite directions.
Resumo:
Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30 s-1 h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid > chlorogenic acid > ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Given the limited resources available for weed management, a strategic approach is required to give the best bang for your buck. The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species invasive potential.