6 resultados para Pilgrimage of Grace, 1536-1537.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Resumo:
The membracid Aconophora compressa Walker, a biological control agent released in 1995 to control Lantana camara (Verbenaceae) in Australia, has since been collected on several nontarget plant species. Our survey suggests that sustained populations of A. compressa are found only on the introduced nontarget ornamental Citharexylum spinosum (Verbenaceae) and the target weed L. camara. It is found on other nontarget plant species only when populations on C. spinosum and L. camara are high, suggesting that the presence of populations on nontarget species may be a spill-over effect. Some of the incidence and abundance on nontarget plants could have been anticipated from host specificity studies done on this agent before release, whereas others could not. This raises important issues about predicting risks posed by weed biological control agents and the need for long-term postintroduction monitoring on nontarget species.
Resumo:
Senna obtusifolia (sicklepod) is an invasive weed of northern Australia, where it significantly impacts agricultural productivity and alters natural ecosystem structure and function. Although currently restricted to northern regions, the potential for S. obtusifolia to spread south is not known. Using the eco-climatic model CLIMEX, this study simulated the potential geographic distribution of S. obtusifolia in Australia under two scenarios. Model parameters for both scenarios were derived from the distribution of S. obtusifolia throughout North and Central America. The first scenario used these base model parameters to predict the distribution of S. obtusifolia in Australia, whilst the second model predicted the distribution of a cold susceptible S. obtusifolia ecotype that is reported to occur in the USA. Both models predicted the potential for an extensive S. obtusifolia distribution, with the first model indicating suitable climatic conditions occurring predominantly in coastal regions from the Northern Territory, to far north Queensland and into northern Victoria. The cold susceptible ecotype displayed a comparatively reduced distribution in the southern parts of Australia, where inappropriate temperatures, a lack of thermal accumulation and cold stress restrict the invasion south to the coastal regions of central New South Wales. The extent of the predicted distribution of both ecotypes of S. obtusifolia reinforces the need for strategic management at a national scale.
Resumo:
The genus name Limnocharis is derived from the Greek limno (meaning marsh or pond) and charis (meaning grace) (Haynes and Holm-Nielson 1992) and flava is Latin for yellow. The genus is generally accepted to have two species, Limnocharis flava (Linneaus) Buchenau 1868 and L. laforestii (Duchass. ex Griseb) 1858. L. flava was first named Alisma flava by Linneaus in 1753 (Haynes and Holm-Nielsen 1986). Since then, other synonyms have included Damasonium flavum Mill. 1772, Limnocharis emarginata Humb. and Bonpl. 1808, Limnocharis plumieri Rich. 1815, Limnocharis laforestii Duchas. ex Griseb (1858) and Limnocharis mattogrossensis O. Ktze. (1893) (Woodson and Schery 1943).
Resumo:
Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.
Resumo:
Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.