19 resultados para Phytophthora sojae

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, dieback of durian has become a major problem in mature orchards in the northern Queensland wet tropics region. A survey of 13 durian orchards was conducted during the dry season (July-September 2001) and following wet season (February-April 2002), with roots and soil from the root zone of affected trees being sampled. Phytophthora palmivora was recovered from the roots of affected trees on 12 of the 13 farms in the dry season, and all farms in the wet season. Pythium vexans was recovered from all 13 farms in both seasons. P. palmivora and P. vexans were recovered from diseased roots of 3-month-old durian seedlings cv. Monthong artificially inoculated with these organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detached-leaf bioassay was developed and used to screen five durian (Durio zibethinus) cultivars against Phytophthora palmivora isolates from a trunk canker, root and fruit. The fruit isolate was less aggressive than the canker and root isolates. The bioassay using the canker isolate was later used to determine the variation in resistance of D. macarantha and nineteen cultivars of D. zibethinus. The cultivars displayed a range of responses with Parung and Gob being most tolerant, with Gaan Yaow, Chanee and Penang 88 being susceptible. The remaining germplasm fell between Gaan Yaow and Penang 88 in susceptibility. The leaf bioassay was found to be a rapid and reliable method for assessing the susceptibility of durian cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytophthora root rot (PRR), caused by P. cinnamomi, is a primary constraint on avocado productivity in Australia. Numerous field trials at sites in northern NSW and southern QLD have demonstrated significant variation in tree health amongst commercial rootstocks and recently selected material, grown under high PRR disease pressure. Selections 'SHSR-02', 'SHSR-04', ungrafted 'Hass' (rooted cuttings from clonal propagation) and the commercial rootstock 'DusaTM' were significantly healthier over time than other rootstocks, many of which died during the course of the trials. 'Reed' was consistently highly susceptible. In many cases superior tree health was associated with increased tree height and trunk girth. The trials also clearly demonstrate the negative impact of Phytophthora root rot on establishment of new avocado production blocks, and the importance of identifying and selecting avocado rootstock material that can withstand high P. cinnamomi disease pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management of Phytophthora fruit rot and Pythium-related root rot of papaya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytophthora root rot of avocados and is the major limiting factor to avocado production in Australia. The disease has a significant impact on productivity. An integrated program is recommended for Phytophthora root rot management with phosphorus acid a key component of this strategy. Monthly root analyses will be conducted on 5 avocado orchards across a range of growing environments on the Atherton Tablelands. Detailed tree phenology data will be collected orchard at the same time the root sampling occurs. In conjunction with the phenological data, decay curves will allow the development of recommendations to optimize phosphorous acid applications for the management of Phytophthora root rot in Shepard avocados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of pre-plant dips of crowns in potassium phosphonate and phosphorous acid was investigated in a systematic manner to develop an effective strategy for the control of root and heart rot diseases caused by Phytophthora cinnamomi in the pineapple hybrids 'MD2' and '73-50' and cultivar Smooth Cayenne. Our results clearly indicate that a high volume spray at planting was much less effective when compared to a pre-plant dip. 'Smooth Cayenne' was found to be more resistant to heart rot than 'MD2' and '73-50', and 'Smooth Cayenne' to be more responsive to treatment with potassium phosphonate. Based on cumulative heart rot incidence over time 'MD2' was more susceptible to heart rot than '73-50' and was more responsive to an application of phosphorous acid. The highest levels of phosphonate in roots were reached one month after planting and levels declined during the next two months. Pre-plant dipping of crowns prior to planting is highly effective to control root and heart rot in the first few months but is not sufficient to maintain health of the mother plant root system up until plant crop harvest when weather conditions continue to favour infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from the first of two artificially inoculated field experiments showed foliar applications of copper hydroxide (Blue Shield Copper) at 600 g a.i./100 L−1 (0% infected fruit), copper hydroxide + metalaxyl-M (Ridomil Gold Plus.) at 877.5 g a.i./100 L−1 (0.27%), metiram + pyraclostrobin (Aero) at 720 g a.i./100 L−1 (0.51%), chlorothalonil (Bravo WeatherStik) at 994 g a.i./100 L−1 (0.63%) and cuprous oxide (Nordox 750 WG) at 990 g a.i./100 L−1 (0.8%) of water significantly reduced the percentage of infected fruit compared to potassium phosphonate (Agri-Fos 600) at 1200 g a.i./100 L−1 (8.22%), dimethomorph (Acrobat) at 108 g a.i./100 L−1 (11.18%) and the untreated control (16%). Results from the second experiment showed fruit sprayed with copper hydroxide (Champ Dry Prill) at 300 (2.0% infected fruit), 375 (0.4%) and 450 g a.i./100 L−1 (0.6%) and metiram + pyraclostrobin (Aero) at 360 (2.8%), 480 (0.6%) and 600 g a.i./100 L−1 of water (1.0%) significantly reduced the percentage of infected fruit compared to the untreated control (19.4%). Foliar sprays of copper hydroxide at 375 g a.i./100 L−1 in rotation with chlorothalonil at 994 g a.i./100 L−1 every two weeks is now recommended to growers for controlling Phytophthora fruit rot of papaya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytophthora cinnamomi is a major pathogen in most macadamia plantations worldwide. Due to stem lesions, stem cankers and leaf defoliation it results in loss of productivity and tree death. In this study we examined accessions of the four Macadamia species and their hybrids, produced via rooted stem cuttings or germinated seeds, for susceptibility to stem canker and necrotic lesion caused by P. cinnamomi. Plants were wound-inoculated with agar containing P. cinnamomi. The symptoms produced in inoculated plants were used to characterize host susceptibility variation within and among the population. Lesion lengths and severity of stem canker were recorded. The four species and hybrids differed significantly in stem canker severity (P < 0.001) and lesion length (P = 0.04). M. integrifolia and M. tetraphylla hybrids were the most susceptible. M. integrifolia had the greatest stem canker severity and the most extensive lesions above and below the site of inoculation. Restricted lesion sizes were observed in M. ternifolia and M. jansenii. The effects of basal stem diameter and the method of propagation either from cuttings or seed were not significant. The genetic variation in the reactions of macadamia accessions to stem infection by P. cinnamomi is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytophthora cinnamomi is a major pathogen of cultivated macadamia (Macadamia integrifolia, Macadamia tetraphylla and their hybrids) worldwide. The susceptibility of the two non-edible Macadamia species (Macadamia ternifolia and Macadamia jansenii) to P. cinnamomi is not well-understood. Commercial macadamia trees are established on grafted seedling (seed propagation) or own-rooted cutting (vegetative propagation) rootstocks of hybrids of the cultivated species. There is little information to support the preferential use of rootstock propagated by either seedling or own-rooted cutting methods in macadamia. In this study we assessed roots of macadamia plants of the four species and their hybrids, derived from the two methods of propagation, for their susceptibility to P. cinnamomi infection. The roots of inoculated plant from which P. cinnamomi was recovered showed blackening symptoms. The non-cultivated species, M. ternifolia and M. jansenii and their hybrids were the most susceptible germplasm compared with M. tetraphylla and M. integrifolia. Of these two species, M. tetraphylla was less susceptible than M. integrifolia. Significant differences were observed among the accessions of their hybrids. A strong association (R2 > 0.75) was recorded between symptomatic roots and disease severity. Root density reduced with increasing disease severity rating in both own-rooted cuttings (R2 = 0.65) and germinated seedlings (R2 = 0.55). P. cinnamomi severity data were not significantly (P > 0.05) different between the two methods of plant propagation. The significance of this study to macadamia breeding and selection of disease resistant rootstocks is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean Stem Fly (SSF), Melanagromyza sojae (Zehntner), belongs to the family Agromyzidae and is highly polyphagous, attacking many plant species of the family Fabaceae, including soybean and other beans. SSF is regarded as one of the most important pests in soybean fields of Asia (e.g., China, India), North East Africa (e.g., Egypt), parts of Russia, and South East Asia. Despite reports of Agromyzidae flies infesting soybean fields in Rio Grande do Sul State (Brazil) in 1983 and 2009 and periodic interceptions of SSF since the 1940s by the USA quarantine authorities, SSF has not been officially reported to have successfully established in the North and South Americas. In South America, M. sojae was recently confirmed using morphology and its complete mitochondrial DNA (mtDNA) was characterized. In the present study, we surveyed the genetic diversity of M. sojae, collected directly from soybean host plants, using partial mtDNA cytochrome oxidase I (COI) gene, and provide evidence of multiple (>10) maternal lineages in SSF populations in South America, potentially representing multiple incursion events. However, a single incursion involving multiple-female founders could not be ruled out. We identified a haplotype that was common in the fields of two Brazilian states and the individuals collected from Australia in 2013. The implications of SSF incursions in southern Brazil are discussed in relation to the current soybean agricultural practices, highlighting an urgent need for better understanding of SSF population movements in the New World, which is necessary for developing effective management options for this significant soybean pest. © FUNPEC-RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graminicolous downy mildews (GDM) are an understudied, yet economically important, group of plant pathogens, which are one of the major constraints to poaceous crops in the tropics and subtropics. Here we present a first molecular phylogeny based on cox2 sequences comprising all genera of the GDM currently accepted, with both lasting (Graminivora, Poakatesthia, and Viennotia) and evanescent (Peronosclerospora, Sclerophthora, and Sclerospora) sporangiophores. In addition, all other downy mildew genera currently accepted, as well as a representative sample of other oomycete taxa, have been included. It was shown that all genera of the GDM have had a long, independent evolutionary history, and that the delineation between Peronosclerospora and Sclerospora is correct. Sclerophthora was found to be a particularly divergent taxon nested within a paraphyletic Phytophthora, but without support. The results confirm that the placement of Peronosclerospora and Sclerospora in the Saprolegniomycetidae is incorrect. Sclerophthora is not closely related to Pachymetra of the family Verrucalvaceae, and also does not belong to the Saprolegniomycetidae, but shows close affinities to the Peronosporaceae. In addition, all GDM are interspersed throughout the Peronosporaceae s lat., suggesting that a separate family for the Sclerosporaceae might not be justified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DArTseq technology is potentially the most appropriate system to discover hundreds of polymorphic genomic loci, scoring thousands of unique genomic-wide DNA fragments in one single experiment, without requiring existing DNA sequence information. The DArT complexity reduction approach in combination with Illumina short read sequencing (Hiseq2000) was applied. To test the application of DArTseq technology in pineapple, a reference population of 13 Ananas genotypes from primitive wild accessions to modern cultivars was used. In a comparison of 3 systems, the combination of restriction enzymes PstI and MseI performed the best producing 18,900 DArT markers and close to 20,000 SNPs. Based on these markers genetic relationships between the samples were identified and a dendrogram was generated. The topography of the tree corresponds with our understanding of the genetic relationships between the genotypes. Importantly, the replicated samples of all genotypes have a dissimilarity of close to 0.0 and occupy the same positions on the tree, confirming high reproducibility of the markers detected. Eventually it is planned that molecular markers will be identified that are associated with resistance to Phytophthora cinnamomi (Pc), the most economically important pathogen of pineapple in Australia, as genetic resistance is known to exist within the Ananas. Marker assisted selection can then be utilized in a pineapple breeding program to develop cultivars resistant to Pc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graminicolous Downy Mildew (GDM) diseases caused by the genera Peronosclerospora (13 spp.) and Sclerophthora (6 spp. and 1 variety) are poorly studied but destructive diseases of major crops such as corn, sorghum, sugarcane and other graminoids. Eight of the 13 described Peronosclerospora spp. are able to infect corn. In particular, P. philippinensis (= P. sacchari), P. maydis, P. heteropogonis, and S. rayssiae var. zeae cause major losses in corn yields in tropical Asia. In 2012 a new species, P. australiensis, was described based on isolates previously identified as P. maydis in Australia; this species is now a pathogen of major concern. Despite the strong impact of GDM diseases, there are presently no reliable molecular methods available for their detection. GDM pathogens are among the most difficult Oomycetes to identify using molecular tools, as their taxonomy is very challenging, and little genetic sequence data are available for development of molecular tools to detect GDM pathogens to species level. For example, from over 15 genes used in identification, diagnostics or phylogeny of Phytophthora, only ITS1 and cox2 show promise for use with GDM pathogens. Multiplex/multigene conventional and qPCR assays are currently under evaluation for the detection of economically important GDM spp. Scientists from the USA, Germany, Canada, Australia, and the Philippines are collaborating on the development and testing of diagnostic tools for these pathogens of concern.