32 resultados para Phenotyping methods
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Water availability is a major limiting factor for wheat (Triticum aestivum L.) in rain-fed agricultural systems worldwide. Root architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root traits in wheat breeding programs has been largely limited due to the lack of suitable phenotyping methods. The aim of this research was to develop a low-cost high-throughput phenotyping method to facilitate selection for desirable root traits. We developed a method to assess ‘seminal root angle’ and ‘seminal root number’ in seedlings – two proxy traits associated to root architecture of mature wheat plants (1). The method involves measuring the angle between the first pair of seminal roots and the number of roots of wheat seedlings grown in transparent pots (Figure 1). Images captured at 5 to 10 days after sowing are analyzed to calculate seminal root angle and number. Performing this technique under “speed breeding” conditions (plants grown at a density of 600 plants / m2, under controlled temperature and constant light) allows the selection based on the desired root traits of up to 5 consecutive generations within 12 months. Alternatively, when focusing only on germplasm screening, up to 52 successive phenotypic assays can be conducted within 12 months. This approach has been shown to be highly reproducible, it requires little resource (time, space, and labour) and can be used to rapidly enrich breeding populations with desirable alleles for narrow root angle and a high number of seminal roots to indirectly target the selection of deeper root system with higher branching at depth. Such root characteristics are highly desirable in wheat to cope with the climate model projections, especially in summer rainfall dominant regions including some Australian, Indian, South American and African cropping regions, where winter crops mainly rely on deep stored water.
Resumo:
Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.
Resumo:
Field evaluation of germplasm for performance under water and heat stress is challenging. Field environments are variable and unpredictable, and genotype x environment interactions are difficult to interpret if environments are not well characterised. Numerous traits, genes and quantitative trait loci have been proposed for improving performance but few have been used in variety development. This reflects the limited capacity of commercial breeding companies to screen for these traits and the absence of validation in field environments relevant to breeding companies, and because little is known about the economic benefit of selecting one particular trait over another. The value of the proposed traits or genes is commonly not demonstrated in genetic backgrounds of value to breeding companies. To overcome this disconnection between physiological trait breeding and uptake by breeding companies, three field sites representing the main environment types encountered across the Australian wheatbelt were selected to form a set of managed environment facilities (MEFs). Each MEF manages soil moisture stress through irrigation, and the effects of heat stress through variable sowing dates. Field trials are monitored continuously for weather variables and changes in soil water and canopy temperature in selected probe genotypes, which aids in decisions guiding irrigation scheduling and sampling times. Protocols have been standardised for an essential core set of measurements so that phenotyping yield and other traits are consistent across sites and seasons. MEFs enable assessment of a large number of traits across multiple genetic backgrounds in relevant environments, determine relative trait value, and facilitate delivery of promising germplasm and high value traits into commercial breeding programs.
Resumo:
Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.
Resumo:
In many designed experiments with animals liveweight is recorded several times during the trial. Such data are commonly referred to as repeated measures data. An aim of such experiments is generally to compare the growth patterns for the applied treatments. This paper discusses some of the methods of analysing repeated measures data and illustrates the use of cubic smoothing splines to describe irregular cattle growth data. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.
Resumo:
The widespread and increasing resistance of internal parasites to anthelmintic control is a serious problem for the Australian sheep and wool industry. As part of control programmes, laboratories use the Faecal Egg Count Reduction Test (FECRT) to determine resistance to anthelmintics. It is important to have confidence in the measure of resistance, not only for the producer planning a drenching programme but also for companies investigating the efficacy of their products. The determination of resistance and corresponding confidence limits as given in anthelmintic efficacy guidelines of the Standing Committee on Agriculture (SCA) is based on a number of assumptions. This study evaluated the appropriateness of these assumptions for typical data and compared the effectiveness of the standard FECRT procedure with the effectiveness of alternative procedures. Several sets of historical experimental data from sheep and goats were analysed to determine that a negative binomial distribution was a more appropriate distribution to describe pre-treatment helminth egg counts in faeces than a normal distribution. Simulated egg counts for control animals were generated stochastically from negative binomial distributions and those for treated animals from negative binomial and binomial distributions. Three methods for determining resistance when percent reduction is based on arithmetic means were applied. The first was that advocated in the SCA guidelines, the second similar to the first but basing the variance estimates on negative binomial distributions, and the third using Wadley’s method with the distribution of the response variate assumed negative binomial and a logit link transformation. These were also compared with a fourth method recommended by the International Co-operation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products (VICH) programme, in which percent reduction is based on the geometric means. A wide selection of parameters was investigated and for each set 1000 simulations run. Percent reduction and confidence limits were then calculated for the methods, together with the number of times in each set of 1000 simulations the theoretical percent reduction fell within the estimated confidence limits and the number of times resistance would have been said to occur. These simulations provide the basis for setting conditions under which the methods could be recommended. The authors show that given the distribution of helminth egg counts found in Queensland flocks, the method based on arithmetic not geometric means should be used and suggest that resistance be redefined as occurring when the upper level of percent reduction is less than 95%. At least ten animals per group are required in most circumstances, though even 20 may be insufficient where effectiveness of the product is close to the cut off point for defining resistance.
Resumo:
Aims: To investigate methods for the recovery of airborne bacteria within pig sheds and to then use the appropriate methods to determine the levels of heterotrophs and Escherichia coli in the air within sheds. Methods and Results: AGI-30 impingers and a six-stage Andersen multi-stage sampler (AMS) were used for the collection of aerosols. Betaine and catalase were added to impinger collection fluid and the agar plates used in the AMS. Suitable media for enumerating E. coli with the Andersen sampler were also evaluated. The addition of betaine and catalase gave no marked increase in the recovery of heterotrophs or E. coli. No marked differences were found in the media used for enumeration of E. coli. The levels of heterotrophs and E. coli in three piggeries, during normal pig activities, were 2Æ2 · 105 and 21 CFU m)3 respectively. Conclusions: The failure of the additives to improve the recovery of either heterotrophs or E. coli suggests that these organisms are not stressed in the piggery environment. The levels of heterotrophs in the air inside the three Queensland piggeries investigated are consistent with those previously reported in other studies. Flushing with ponded effluent had no marked or consistent effect on the heterotroph or E. coli levels. Significance and Impact of the Study: Our work suggests that levels of airborne heterotrophs and E. coli inside pig sheds have no strong link with effluent flushing. It would seem unlikely that any single management activity within a pig shed has a dominant influence on levels of airborne heterotrophs and E. coli
Resumo:
Objective To improve the isolation rate and identification procedures for Haemophilus parasuis from pig tissues. Design Thirteen sampling sites and up to three methods were used to confirm the presence of H. parasuis in pigs after experimental challenge. Procedure Colostrum-deprived, naturally farrowed pigs were challenged intratracheally with H parasuis serovar 12 or 4. Samples taken during necropsy were either inoculated onto culture plates, processed directly for PCR or enriched prior to being processed for PCR. The recovery of H parasuis from different sampling sites and using different sampling methods was compared for each serovar. Results H parasuis was recovered from several sample sites for all serovar 12 challenged pigs, while the trachea was the only positive site for all pigs following serovar 4 challenge. The method of solid medium culture of swabs, and confirmation of the identity of cultured bacteria by PCR, resulted in 38% and 14% more positive results on a site basis for serovars 12 and 4, retrospectively, than direct PCR on the swabs. This difference was significant in the serovar 12 challenge. Conclusion Conventional culture proved to be more effective in detecting H parasuis than direct PCR or PCR on enrichment broths. For subacute (serovar 4) infections, the most successful sites for culture or direct PCR were pleural fluid, peritoneal fibrin and fluid, lung and pericardial fluid. For acute (serovar 12) infections, the best sites were lung, heart blood, affected joints and brain. The methodologies and key sampling sites identified in this study will enable improved isolation of H parasuis and aid the diagnosis of Glässer's disease.
Resumo:
Aerial surveys of kangaroos (Macropus spp.) in Queensland are used to make economically important judgements on the levels of viable commercial harvest. Previous analysis methods for aerial kangaroo surveys have used both mark-recapture methodologies and conventional distance-sampling analyses. Conventional distance sampling has the disadvantage that detection is assumed to be perfect on the transect line, while mark-recapture methods are notoriously sensitive to problems with unmodelled heterogeneity in capture probabilities. We introduce three methodologies for combining together mark-recapture and distance-sampling data, aimed at exploiting the strengths of both methodologies and overcoming the weaknesses. Of these methods, two are based on the assumption of full independence between observers in the mark-recapture component, and this appears to introduce more bias in density estimation than it resolves through allowing uncertain trackline detection. Both of these methods give lower density estimates than conventional distance sampling, indicating a clear failure of the independence assumption. The third method, termed point independence, appears to perform very well, giving credible density estimates and good properties in terms of goodness-of-fit and percentage coefficient of variation. Estimated densities of eastern grey kangaroos range from 21 to 36 individuals km-2, with estimated coefficients of variation between 11% and 14% and estimated trackline detection probabilities primarily between 0.7 and 0.9.
Resumo:
In semi-arid areas such as western Nebraska, interest in subsurface drip irrigation (SDI) for corn is increasing due to restricted irrigation allocations. However, crop response quantification to nitrogen (N) applications with SDI and the environmental benefits of multiple in-season (IS) SDI N applications instead of a single early-season (ES) surface application are lacking. The study was conducted in 2004, 2005, and 2006 at the University of Nebraska-Lincoln West Central Research and Extension Center in North Platte, Nebraska, comparing two N application methods (IS and ES) and three N rates (128, 186, and 278 kg N ha(-1)) using a randomized complete block design with four replications. No grain yield or biomass response was observed in 2004. In 2005 and 2006, corn grain yield and biomass production increased with increasing N rates, and the IS treatment increased grain yield, total N uptake, and gross return after N application costs (GRN) compared to the ES treatment. Chlorophyll meter readings taken at the R3 corn growth stage in 2006 showed that less N was supplied to the plant with ES compared to the IS treatment. At the end of the study, soil NO3-N masses in the 0.9 to 1.8 m depth were greater under the IS treatment compared to the ES treatment. Results suggested that greater losses of NO3-N below the root zone under the ES treatment may have had a negative effect on corn production. Under SDI systems, fertigating a recommended N rate at various corn growth stages can increase yields, GRN, and reduce NO3-N leaching in soils compared to concentrated early-season applications.
Resumo:
Maize is a highly important crop to many countries around the world, through the sale of the maize crop to domestic processors and subsequent production of maize products and also provides a staple food to subsistance farms in undeveloped countries. In many countries, there have been long-term research efforts to develop a suitable hardness method that could assist the maize industry in improving efficiency in processing as well as possibly providing a quality specification for maize growers, which could attract a premium. This paper focuses specifically on hardness and reviews a number of methodologies as well as important biochemical aspects of maize that contribute to maize hardness used internationally. Numerous foods are produced from maize, and hardness has been described as having an impact on food quality. However, the basis of hardness and measurement of hardness are very general and would apply to any use of maize from any country. From the published literature, it would appear that one of the simpler methods used to measure hardness is a grinding step followed by a sieving step, using multiple sieve sizes. This would allow the range in hardness within a sample as well as average particle size and/or coarse/fine ratio to be calculated. Any of these parameters could easily be used as reference values for the development of near-infrared (NIR) spectroscopy calibrations. The development of precise NIR calibrations will provide an excellent tool for breeders, handlers, and processors to deliver specific cultivars in the case of growers and bulk loads in the case of handlers, thereby ensuring the most efficient use of maize by domestic and international processors. This paper also considers previous research describing the biochemical aspects of maize that have been related to maize hardness. Both starch and protein affect hardness, with most research focusing on the storage proteins (zeins). Both the content and composition of the zein fractions affect hardness. Genotypes and growing environment influence the final protein and starch content and. to a lesser extent, composition. However, hardness is a highly heritable trait and, hence, when a desirable level of hardness is finally agreed upon, the breeders will quickly be able to produce material with the hardness levels required by the industry.
Resumo:
QTL mapping methods for complex traits are challenged by new developments in marker technology, phenotyping platforms, and breeding methods. In meeting these challenges, QTL mapping approaches will need to also acknowledge the central roles of QTL by environment interactions (QEI) and QTL by trait interactions in the expression of complex traits like yield. This paper presents an overview of mixed model QTL methodology that is suitable for many types of populations and that allows predictive modeling of QEI, both for environmental and developmental gradients. Attention is also given to multi-trait QTL models which are essential to interpret the genetic basis of trait correlations. Biophysical (crop growth) model simulations are proposed as a complement to statistical QTL mapping for the interpretation of the nature of QEI and to investigate better methods for the dissection of complex traits into component traits and their genetic controls.
Resumo:
Promotion of better procedures for releasing undersize fish, advocacy of catch-and-release angling, and changing minimum legal sizes are increasingly being used as tools for sustainable management of fish stocks. However without knowing the proportion of released fish that survive, the conservation value of any of these measures is uncertain. We developed a floating vertical enclosure to estimate short-term survival of released line-caught tropical and subtropical reef-associated species, and used it to compare the effectiveness of two barotrauma-relief procedures (venting and shotline releasing) on red emperor (Lutjanus sebae). Barotrauma signs varied with capture depth, but not with the size of the fish. Fish from the greatest depths (40-52 m) exhibited extreme signs less frequently than did those from intermediate depths (30-40 m), possibly as a result of swim bladder gas being vented externally through a rupture in the body wall. All but two fish survived the experiment, and as neither release technique significantly improved short-term survival of the red emperor over non-treatment we see little benefit in promoting either venting or shotline releasing for this comparatively resilient species. Floating vertical enclosures can improve short-term post-release mortality estimates as they overcome many problems encountered when constraining fish in submerged cages.
Resumo:
Inter-specific Corymbia hybrids are of increasing interest to plantation forestry, yet there is little knowledge of the most suitable controlled pollination methods for this genus. Inter-specific crosses were made between C. torelliana [CT(maternal parent)] and C. citriodora subsp. variegata (CCV), C. henryi (CH) and C. citriodora subsp. citriodora (CCC) using conventional pollination, one-stop pollination (OSP) and artificially-induced protogyny on yellow buds (AIP Y) pollination methods. Additional treatments included AIP on green buds (AIP G) and the use of exclusion bags for the OSP and AIP methods. Inter-specific hybrids (CT x CCV, CT x CH and CT x CCC) were successfully created using all three pollination methods. The AIP Y treatment provided the highest seed yields and achieved time savings of >41% over the conventional and OSP methods, resulting in up to five-fold increases in operator productivity. However, the AIP Y treatment also had the highest C. torelliana contamination levels (9.3–13.2%). The use of exclusion bags with the AIP method had minimal effect on contamination rates, indicating a high proportion of selfpollen contamination. Contamination rates varied between maternal parents, suggesting variation in selfcompatibility for C. torelliana individuals. AIP using semi-ripe green buds was not effective at reducing selfing and had low operator productivity. The AIP method is suitable for use in a large-scale hybrid breeding program for C. torelliana. When self-pollination effects are managed, it could greatly reduce the costs associated with the production of seed of elite family crosses for commercial forestry deployment.
Resumo:
Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such ofalse-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.