3 resultados para Phenolic panels in job
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Abstract It is widely considered that high pressure processing (HPP) results in better retention of micronutrients and phytochemicals compared to thermal pasteurization (TP), although some studies indicate that this may not be true in all cases. The aims of this study were (1) to objectively compare the effects of HPP under commercial processing conditions with thermal pasteurization (TP) on the stability of phenolic antioxidants in strawberries following processing and during storage and (2) to evaluate the influence of varietal differences and hence differences in biochemical composition of strawberries on the stability of phenolic antioxidants. Strawberry puree samples from cultivars Camarosa, Rubygem, and Festival were subjected to HPP (600 MPa/20 °C/5 min) and TP (88 °C/2 min). The activities of oxidative enzymes were evaluated before and after processing. Furthermore, the antioxidant capacity (total phenolic content (TPC), oxygen radical absorbance capacity (ORAC), and ferric reducing antioxidant power (FRAP)) and individual anthocyanins (by HPLC) were determined prior to and following processing and after three months of refrigerated storage (4 °C). Depending on the cultivar, HPP caused 15–38% and 20–33% inactivation of polyphenol oxidase and peroxidase, respectively, compared to almost complete inactivation of these enzymes by TP. Significant decreases (p < 0.05) in ORAC, FRAP, TPC and anthocyanin contents were observed during processing and storage of both HPP and TP samples. Anthocyanins were the most affected with only 19–25% retention after three months of refrigerated storage (4 °C). Slightly higher (p < 0.05) loss of TPC and antioxidant capacity were observed during storage of HPP samples compared to TP. Industrial Relevance: The results of the study demonstrated that both high pressure processing and thermal pasteurization result in high retention of phenolic phytochemicals in strawberry products. Under the conditions investigated, high pressure processing did not result in a better retention of phenolic phytochemicals compared to thermal pasteurization. In fact, a slightly higher loss of total polyphenol content and antioxidant capacity were observed during refrigerated storage of HPP processed samples. Our results showed that, high pressure processing may not always be a better alternative to thermal processing for strawberry puree processing if the main objective is better retention of phenolic antioxidants. However, it should be noted that other quality attributes such as sensory properties, where distinct advantages of HPP are expected, were outside the scope of this study.
Resumo:
This paper reviews the current research on phytochemical composition and non-Western traditional culinary food preparation and health uses of papaya. Only ripe papaya fruit flesh is normally eaten in Western countries. The orange or red flesh is an excellent source of pro-vitamin A and ascorbic acid. In South-East Asia, both ripe and green fruit are used and additionally leaves are popularly consumed either raw in salad or cooked as a green vegetable. The leaves contain alkaloids as well as quercetin and kaempferol as the main phenolic compounds. In contrast to Western use papaya has a reputation as a medicinal plant in tropical countries where it is grown. Different plant parts such as fruit, leaf, seed, root, bark and flowers have been used as health treatments. These have included use as topical dressings for treating ulcers and dermatitis, gastrointestinal uses such as antihelminthic and antibacterial activity treatments and traditional uses for fertility control. The differences in use for food and health illustrate potential applications and nutritional benefits of the plant which require further research. With better verification the health applications of papaya could be more widely adopted into Western culture.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.