8 resultados para Periodontal legament cells (PDLCs)
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Sequestration of parasite-infected red blood cells (RBCs) in the microvasculature is an important pathological feature of both bovine babesiosis caused by Babesia bovis and human malaria caused by Plasmodium falciparum. Surprisingly, when compared with malaria, the cellular and molecular mechanisms that underlie this abnormal circulatory behaviour for RBCs infected with B. bovis have been relatively ignored. Here, we present some novel insights into the adhesive and mechanical changes that occur in B. bovis-infected bovine RBCs and compare them with the alterations that occur in human RBCs infected with P. falciparum. After infection with B. bovis, bovine RBCs become rigid and adhere to vascular endothelial cells under conditions of physiologically relevant flow. These alterations are accompanied by the appearance of ridge-like structures on the RBC surface that are analogous, but morphologically and biochemically different, to the knob-like structures on the surface of human RBCs infected with P. falciparum. Importantly, albeit for a limited number of parasite lines examined here, the extent of these cellular and rheological changes appear to be related to parasite virulence. Future investigations to identify the precise molecular composition of ridges and the proteins that mediate adhesion will provide important insight into the pathogenesis of both babesiosis and malaria.
Resumo:
Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 mu g mL(-1)) and Nam Doc Mai peel extracts (50 and 100 mu g mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.
Resumo:
Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.
Resumo:
Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1 h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX (R) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1 h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50(cell) for 1 h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kg(dry weight) which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 h and 24 h of exposure to benzene, toluene, ethylbenzene and xylenes (BTEX) as individual compounds and mixtures of 4 or 6 components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated use a mass balance model and came to 17, 12, 11, 9, 4 and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene and p-xylene respectively after 1 h of exposure. The EC50 decreased by a factor of four after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions were found for benzene, toluene, ethylbenzene and m-xylene at four different representative fixed concentration ratios after 1 h of exposure but lower agreement to mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable but lower quality prediction as well.
Resumo:
Scabies is an ectoparasitic infestation by the mite Sarcoptes scabiei. Although commonly self-limiting, a fraction of patients develop severely debilitating crusted scabies. The immune mechanisms underlying the development of crusted scabies are unclear, and undertaking longitudinal infection studies in humans is difficult. We utilized a porcine model to compare cellular immune responses in peripheral blood and skin of pigs with different clinical manifestations of scabies (n = 12), and in uninfected controls (n = 6). Although clinical symptoms were not evident until at least 4 weeks post-infestation, the numbers of peripheral IFNγ-secreting CD4+ T cells and γδ T cells increased in infected pigs from week 1 post-infestation. γδ T cells remained increased in the blood at week 15 post-infestation. At week 15, skin cell infiltrates from pigs with crusted scabies had significantly higher CD8+ T cell, γδ T cell and IL-17+ cell numbers than those with ordinary scabies. Peripheral IL-17 levels were not increased, suggesting that localized skin IL-17-secreting T cells may play a critical role in the pathogenesis of crusted scabies development. Given the potential of anti-IL-17 immunotherapy demonstrated for other inflammatory skin diseases, this study may provide a novel therapeutic avenue for patients with recurrent crusted scabies.
Resumo:
RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis.
Resumo:
Bioactivities of peel and flesh extracts of 3 genetically diverse mango (Mangifera indica L.) varieties were studied. Nam Doc Mai peel extracts, containing the largest amounts of polyphenols, were associated with an effect on MCF-7 viable cell numbers with an IC50 (dose required for 50% inhibition of cell viability) of 56 μg/mL and significantly (p<0.01) induced cell death in MDA-MB-231 cells, compared with other varieties. Hydrophilic fractions of Nam Doc Mai peel extracts had the highest bioactivity values against both MCF-7 and MDA-MB-231 cells. Soluble polyphenols were present in the largest amounts in most hydrophilic fractions. The Nam Doc Mai mango variety contains high levels of fruit peel bioactivity, which appears to be related to the nature of the polyphenol composition.