7 resultados para Pectoral fins

em eResearch Archive - Queensland Department of Agriculture


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution and density of the ampullary electroreceptors in the skin of elasmobranchs are influenced by the phylogeny and ecology of a species. Sensory maps were created for 4 species of pristid sawfish. Their ampullary pores were separated into pore fields based on their innervation and cluster formation. Ventrally, ampullary pores are located in 6 areas (5 in Pristis microdon), covering the rostrum and head to the gills. Dorsally, pores are located in 4 areas (3 in P. microdon), which cover the rostrum, head and may extend slightly onto the pectoral fins. In all species, the highest number of pores is found on the dorsal and ventral sides of the rostrum. The high densities of pores along the rostrum combined with the low densities around the mouth could indicate that sawfish use their rostrum to stun their prey before ingesting it, but this hypothesis remains to be tested. The directions of ampullary canals on the ventral side of the rostrum are species specific. P. microdon possesses the highest number of ampullary pores, which indicates that amongst the study species this species is an electroreception specialist. As such, juvenile P. microdon inhabit low-visibility freshwater habitats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ocellated angelshark, Squatina tergocellatoides, Chen, 1963 is redescribed from the holotype, which was thought to be lost. Its recent recovery has allowed for a revised description, including new data, and comparison to other Western Pacific squatinids. Squatina tergocellatoides can be distinguished from its congeners by three pairs of prominent large black spots, each with a diameter greater than eye length; two on each pectoral fin at anterior and posterior angles and one on each side near the tail base; another three pairs of lesser defined spots, one large spot on base of each dorsal fin and one located laterally on each side of tail located below first dorsal fin. Ventral surface is uniformly white to cream coloured, and margins of pectoral fins and tail similar in colour to dorsal side. Pectoral fins with angular lateral apices and rounded posterior lobe, pelvic fin tips not reaching origin of first dorsal fin, strongly fringed nasal barbels, small inter-orbital space, head and mouth lengths, broad internarial width and pelvic fin base, a very small pelvic girdle width, and a caudal fin with triangular ventral lobe greater in length than dorsal lobe. Comments on additional specimens are provided, as well as observations on biogeography. A review of western Pacific squatinids is also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of the river shark Glyphis in northern Australia is extended with new records of occurrence in the Gulf of Carpentaria and a reassessment of historical survey data from Cape York Peninsula. Nine new specimens of Glyphis sp. A were collected in 2005 from the Weipa region on the Queensland coast of the Gulf of Carpentaria. A re-examination of archival records from 1978-86 marine and estuarine fish surveys in the Gulf of Carpentaria and along the northern Queensland East Coast allowed a further nineteen Glyphis specimens to be identified. Combined this gives twenty-eight new records of Glyphis specimens from the coasts of Cape York Peninsula, Queensland. Common habitat characteristics for all captures were turbid, shallow, fast running tidal water in the upper reaches of coastal rivers. The substrate was generally muddy and the rivers lined with mangrove. In all surveys the representation of Glyphis was low, being less than 1% of the total shark captures historically and 0.002 sharks 50 m net hour-1 in Weipa 2005. The size range captured was 1000-1800 mm total length historically and 705-1200 mm total length from Weipa 2005, with none recorded as sexually mature. Diagnostic characteristics of the Weipa specimens, identified as Glyphis sp. A, were: lower jaw teeth protruding and "spear-like"; second dorsal fin greater than half the height of the first dorsal fin; the snout relatively short and fleshy in the lateral view; pectoral fin ventral surface black in colouration; the precaudal vertebral count between 118 and 123; and the total vertebral count between 204 and 209.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Chapter 1, the literature relating to rabies virus and the rabies like lyssaviruses is reviewed. In Chapter 2, data are presented from 1170 diagnostic submissions for ABLV testing by fluorescent antibody test (Centocor FAT). All 27 non-bat submissions were ABLV-negative. Of 1143 bat accessions 74 (16%) were ABLV-positive, including 69 of 974 (7.1%) flying foxes (Pteropus spp.), 5 of 7 (71.4%) Saccolaimus flaviventris (Yellow-bellied sheathtail bats), none of 151 other microchiropteran bats, and none of 11 unidentified bats. Statistical analysis of data from 868 wild Black, Grey-headed, Little Red and Spectacled flying foxes (Pteropus alecto, P. poliocephalus, P. scapulatus, and P. conspicillatus) indicated that three factors; species, health status and age were associated with significant (p< 0.001) differences in the proportion of ABLV-positive bats. Other factors including sex, whether the bat bit a person or animal, region, year, and season submitted, were not associated with ABLV. Case data for 74 ABLV-positive bats, including the circumstances in which they were found and clinical signs, is presented. In Chapter 3, the aetiological diagnosis was investigated for 100 consecutive flying fox submissions with neurological signs. ABLV (32%), spinal and head injuries (29%), and neuro-angiostrongylosis (18%) accounted for most neurological syndromes in flying foxes. No evidence of lead poisoning was found in unwell (n=16) or healthy flying foxes (n=50). No diagnosis was reached for 16 cases, all of which were negative for ABLV by TaqMan PCR. The molecular diversity of ABLV was examined in Chapter 4 by sequencing 36 bases of the leader sequence, the entire N gene, and start of the P gene of 28 isolates from pteropid bats and 3 isolates from Yellow-bellied sheathtail (YBST) bats. Phylogenetic analysis indicated all ABLV isolates clustered together as a discrete group within the Lyssavirus genera closely related to rabies virus and European bat lyssavirus-2 isolates. The ABLV lineage consisted of two variants; one (ybst-ABLV) consisted of isolates only from YBST bats, the other (pteropid-ABLV) was common to Black, Grey-headed and Little Red flying foxes. No associations were found between the sequences and either the geographical location or year found, or individual flying fox species. In Chapter 5, 15 inocula prepared from the brains or salivary glands of naturally-infected bats were evaluated by intracerebral (IC) and footpad (FP) inoculation of Quackenbush mice in order to select and characterize a highly virulent inoculum for further use in bats (Inoculum 5). In Chapter 6, nine Grey-headed flying foxes were inoculated with 105.2 to 105.5 MICED50 of Inoculum 5 divided into four sites, left footpad, pectoral muscle, temporal muscle and muzzle. Another bat was inoculated with half this dose divided into the footpad and pectoral muscle only. Seven of 10 bats developed clinical disease of 1 to 4 days duration between PI-days 10 and 19 and were shown to be ABL-positive by FAT, HAM immunoperoxidase staining, virus isolation in mice, and TaqMan PCR. Five of the seven bats displayed overt aggression, one died during a seizure, and one showed intractable agitation, pacing, tremors, and ataxia. Viral antigen was demonstrated throughout the central and peripheral nervous systems and in the epithelial cells of the submandibular salivary glands (n=4). All affected bats had mild to moderate non-suppurative meningoencephalitis and severe ganglioneuritis. No ABLV was detected in three bats that remained well until the end of the experiment on day 82. One survivor developed a strong but transient antibody response. In Chapter 7, the relative virulence of inocula prepared from the brains and salivary glands of experimentally infected flying foxes was evaluated in mice by IC and FP inoculation and TaqMan assay. The effects in mice were correlated to the TaqMan CT value and indicated a crude association between virulence and CT value that has potential application in the selection of inocula. In Chapter 8, 36 Black and Grey-headed flying foxes were vaccinated with one (day 0) or two (+ day 28) doses of Nobivac rabies vaccine and co-vaccinated with keyhole limpet haemocyanin (KLH). All bats responded to the Nobivac vaccine with a rabies-RFFIT titer > 0.5 IU/mL that is nominally indicative of protective immunity. Plasma from bats with rabies titres >2 IU/mL had cross-neutralising ABLV titres >1:154. A specifically developed ELISA detected a strong but transient response to KLH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective. (C) 2012 The Authors Journal of Fish Biology (C) 2012 The Fisheries Society of the British Isles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.