29 resultados para Parasitoid rearing
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Silverleaf whitefly (SLW), Bemisia tabaci biotype B, is a major horticultural pest that costs Queensland vegetable growers millions of dollars in lost production and control measures each year. In the Bowen and Burdekin districts of North Queensland, the major cultivated SLW host crops are tomatoes, melons, green beans, pumpkins, eggplants, and cucumbers, which cover a total production area of approximately 6500 ha. Eretmocerus hayati, an effective SLW parasitoid, was imported into Australia by CSIRO in 2002 and released from quarantine in 2004. In 2006, DAFF established a mass-rearing unit for E. hayati at Bowen Research Station to provide E. hayati for release on vegetable farms within its SLW integrated pest management research program. A total of 1.3 million E. hayati were released over three seasons on 34 vegetable farms in the Bowen and Burdekin districts (October 2006 to December 2008). Post-release samplings were conducted across the release area over this time period with parasitism levels recorded in tomatoes, melons, beans, eggplants, pumpkins, and various SLW weed hosts. Sample data show that E. hayati established at most release sites as well as some non-release sites, indicating natural spread. Overall results from these three years of evaluation clearly demonstrated that E hayati releases played a significant role in SLW control. In most crops sampled, E hayati exerted between 30 and 80% parasitism. Even in regularly sprayed crops, such as tomato and eggplant, E. hayati was able to achieve an overall average parasitism of 45%.
Resumo:
Many arthropod predators and parasitoids exhibit either stage-specific or lifetime omnivory, in that they include extra-floral nectar, floral nectar, honeydew or pollen in their immature and/or adult diet. Access to these plant-derived foods can enhance pest suppression by increasing both the individual fitness and local density of natural enemies. Commercial products such as Amino-Feed®, Envirofeast®, and Pred-Feed® can be applied to crops to act as artificial-plant-derived foods. In laboratory and glasshouse experiments we examined the influence of carbohydrate and protein rich Amino-Feed UV® or Amino-Feed, respectively, on the fitness of a predatory nabid bug Nabis kinbergii Reuter (Hemiptera: Nabidae) and bollworm pupal parasitoid Ichneumon promissorius (Erichson) (Hymenoptera: Ichneumonidae). Under the chosen conditions, the provision of either wet or dry residues of Amino-Feed UV had no discernable effect on immediate or longer-term survival and immature development times of N. kinbergii. In contrast, the provision of honey, Amino-Feed plus extrafloral nectar, and extrafloral nectar alone had a marked effect on the longevity of I. promissorius, indicating that they were limited by at least carbohydrates as an energy source, but probably not protein. Compared with a water only diet, the provision of Amino-Feed plus extrafloral nectar increased the longevity of males and females of I. promissorius by 3.0- and 2.4-fold, respectively. Not only did female parasitoids live longer when provided food, but the total number of eggs laid and timing of deposition was affected by diet under the chosen conditions. Notably, females in the water and honey treatments deposited greater numbers of eggs earlier in the trial, but this trend was unable to be sustained over their lifetime. Egg numbers in these treatments subsequently fell below the levels achieved by females in the Amino-Feed plus extrafloral nectar and cotton extrafloral nectar only treatments. Furthermore, there were times when the inclusion of the Amino-Feed was beneficial compared with cotton extrafloral nectar only. Artificial food supplements and plant-derived foods are worthy of further investigation because they have potential to improve the ecosystem service of biological pest control in targeted agroecosystems by providing natural enemies with an alternative source of nutrition, particularly during periods of prey/host scarcity.
Resumo:
BACKGROUND: Chlorantraniliprole is a novel anthranilic diamide insecticide registered for use in vegetables, fruits, grains and turf against a variety of insect pests. The objective of this article is to summarize results of acute toxicity testing of chlorantraniliprole on seven species of parasitic wasps with wide geographic distribution and relevance to different crops and integrated pest management (IPM) programmes. RESULTS: Tier-1, worst-case laboratory studies evaluated wasp survival and reproduction following different exposure concentrations and scenarios to chlorantraniliprole (i.e. fresh-dried spray deposits on glass plates, direct contact, ingestion, egg card, dipped leaf residue bioassays, sprayed mummies). No statistically significant effects on adult survival, percentage parasitism or emergence were observed following exposures to chlorantraniliprole compared with controls. CONCLUSION: Chlorantraniliprole was harmless to the parasitoid wasp species tested according to IOBC classification criteria (<30% effects) and may be a useful tool in IPM programmes.
Resumo:
Laboratory colonies of Bactrocera passiflorae (Froggatt) and B. xanthodes (Broun) were established at Koronivia Research Station, Fiji in 1991. Laboratory rearing of the two economically important species was a prerequisite to studies conducted on protein bait spray and quarantine treatment development. To increase the production of laboratory reared fruit flies for this research and also to have a substitute larval diet available, replicated comparisons of the effectiveness of larval diets were carried out using B. passiflorae and B. xanthodes. The diets compared were pawpaw/bagasse, dehydrated carrot and diets used for culturing Mediterranean fruit fly (Ceratitis capitata Wiedemann), Oriental fruit fly (B. dorsalis Hendel), melon fly (B. cucurbitae Coquillett) and B. latifrons (Hendel), pawpaw diet and breadfruit diet. B. passiflorae and B. xanthodes eggs seeded onto the various diets were allowed to develop into larvae, pupae and adults. The percentage egg hatch, number of pupae recovered, percentage pupal mortality, weight of 100 pupae, number of adults and percentage eclosion were used to determine the effectiveness of the diets. Results showed that pawpaw/bagasse and dehydrated carrot diets performed favorably for both species. The pawpaw diet currently used as standard larval diets for both species is the most readily available and easiest to use. Breadfruit diet was tested on B. xanthodes only and showed that it was a suitable substitute for the pawpaw-based diets. Other larval diets, cassava/pawpaw and banana diets, that have been developed and used in the South Pacific areas are also discussed in this paper. When pawpaw or breadfruit are not available, dehydrated carrot diet may be substituted for fruit-based larval diets.
Resumo:
Laboratory colonies of 15 economically important species of multi-host fruit flies (Diptera:Tephritidae) have been established in eight South Pacific island countries for the purpose of undertaking biological studies, particularly host status testing and research on quarantine treatments. Laboratory rearing techniques are based on the development of artificial diets for larvae consisting predominately of the pulp of locally available fruits including pawpaw, breadfruit and banana. The pawpaw diet is the standard diet and is used in seven countries for rearing 11 species. Diet ingredients are standard proportions of fruit pulp, hydrolysed protein and a bacterial and fungal inhibitor. The diet is particularly suitable for post-harvest treatment studies when larvae of known age are required. Another major development in the laboratory rearing system is the use of pure strains of Enterobacteriaceae bacterial cultures as important adult-feeding supplements. These bacterial cultures are dissected out of the crop of wild females, isolated by sub-culturing, and identified before supply to adults on peptone yeast extract agar plates. Most species are egged using thin, plastic receptacles perforated with 1 mm oviposition holes, with fruit juice or larval diet smeared internally as an oviposition stimulant. Laboratory rearing techniques have been standardised for all of the Pacific countries. Quality control monitoring is based on acceptable ranges in per cent egg hatch, pupal weight and pupal mortality. Colonies are rejuvenated every 6 to 12 months by crossing wild males with laboratory-reared females and vice versa. The standard rearing techniques, equipment and ingredients used in collecting, establishment, maintenance and quality control of these fruit fly species are detailed in this paper.
Resumo:
We developed a suitable diet for mass rearing of Cryptolestes ferrugineus (Stephens) populations under laboratory conditions. Recently, this pest has developed strong level of resistance to phosphine in Australia, and therefore, a significant amount of research has been directed towards its management. In total, nineteen grain-based diets, containing rolled oats, various combinations of cracked grains and flours of wheat, sorghum, maize and barley were tested. Each diet contained a small proportion of wheat germ (4.5% w/w) and torula yeast (0.5% w/w). Experiments were conducted at fixed temperature and relative humidity regimes of 30 ± 2 °C and 70 ± 2%, respectively, and replicated three times. Adults (n = 40) of a laboratory strain of C. ferrugineus were introduced into each diet, removed after 14 days and total numbers of live adult progeny were recorded. The following diets resulted in highest live progeny production: barley flour (95%) (607.67 ± 11.21) = rolled oats (75%) + cracked sorghum (20%) (597.33 ± 33.79) ≥ wheat flour (47.5%) + barley flour (47.5%) (496.67 ± 52.93) > cracked sorghum (95%) (384.00 ± 60.66). The performance of these four diets was then tested with field-collected populations of C. ferrugineus and Cryptolestes pusillus (Schonherr). The diets based on rolled oats + cracked sorghum, wheat flour + barley flour, and barley flour alone consistently produced highest progeny numbers in field-collected populations of both species, with mean progeny numbers ranging from 359.9 to 478.5. The multiplication of C. pusillus was significantly higher than C. ferrugineus on all four diets. Our findings will help in mass rearing of healthy cultures of C. ferrugineus and C. pusillus that will greatly facilitate laboratory and field research and in particular, in developing management tactics for these species.
Resumo:
The parasitoid of solenopsis mealybug, namely Aenasius bambawalei, has been recorded for the first time in Emerald, Queensland, Australia. The parasitoid was found during a routine inspection of ratoons on the western side of Emerald on 27 November 2012. During a recent trip to Theodore, two casings of parasitized mealybugs (already hatched) were also found, one on pigweed [ Amaranthus] and one in the field on a cotton plant.
Resumo:
We evaluated the role of the larval parasitoid, Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae), in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae) by cage exclusion experiments and direct field observation during the winter season in southern Queensland, Australia. The cage exclusion experiment involved uncaged, open cage and closed cage treatments. A higher percentage (54-83%) of P. xylostella larvae on sentinel plants were lost in the uncaged treatment than the closed (4-9%) or open cage treatments (11-29%). Of the larvae that remained in the uncaged treatment, 72-94% were parasitized by D. semiclausum, much higher than that in the open cage treatment (8-37% in first trial, and 38-63% in second trial). Direct observations showed a significant aggregation response of the field D. semiclausum populations to high host density plants in an experimental plot and to high host density plots that were artificially set-up near to the parasitoid source fields. The degree of aggregation varied in response to habitat quality of the parasitoid source field and scales of the manipulated host patches. As a result, density-dependence in the pattern of parasitism may depend on the relative degree of aggregation of the parasitoid population at a particular scale. A high degree of aggregation seems to be necessary to generate density-dependent parasitism by D. semiclausum. Integration of the cage exclusion experiment and direct observation demonstrated the active and dominant role of this parasitoid in controlling P. xylostella in the winter season. A biologically based IPM strategy, which incorporates the use of D. semiclausum with Bt, is suggested for the management of P. xylostella in seasons or regions with a mild temperature.
Resumo:
An apparatus is described that facilitates the determination of incorporation levels of isotope labelled, gaseous precursors into volatile insect-derived metabolites. Atmospheres of varying gas compositions can be generated by evacuation of a working chamber followed by admission of the required levels of component gases, using a precision, digitised pressure read-out system. Insects such as fruit-flies are located initially in a small introduction chamber, from which migration can occur downwards into the working chamber. The level of incorporation of labelled precursors is continuously assayed by the Solid Phase Micro Extraction (SPME) technique and GC-MS analyses. Experiments with both Bactrocera species (fruit-flies) and a parasitoid wasp, Megarhyssa nortoni nortoni (Cresson) and oxygen-18 labelled dioxygen illustrate the utility of this system. The isotope effects of oxygen-18 on the carbon-13 NMR spectra of 1,7- dioxaspiro[5,5]undecane are also described.
Resumo:
Since 1989, researchers with the Department of Primary Industries and Fisheries (DPI&F) in Queensland, Australia, have successfully used controlled low-water exchange green-water cultures to rear the larvae of estuarine fishes and crustaceans through to metamorphosis. High survivals and excellent fry condition have been achieved for several commercially important endemic species produced for various projects. They include barramundi or sea bass, Lates calcarifer, Australian bass, Macquaria novemaculeata, dusky flathead, Platycephalus fuscus, sand whiting, Sillago ciliata, red sea bream or snapper, Pagrus auratus, banana prawn, Fenneropenaeus merguiensis, and others. The consistent success of our standardised and relatively simple approach at different localities has led to it being incorporated into general fingerling production practices at several establishments in Australia. Although post-metamorphosis rearing methods have differed for each species investigated, due to various biological and behavioural traits and project requirements, these larval rearing methods have been successful with few species-specific modifications. Initially modelled on the Taiwanese approach to rearing Penaeids in aerated low-water exchange cultures, the approach similarly appears to rely on a beneficial assemblage of micro-organisms. Conceptually, these micro-organisms may include a mixture of the air-borne primary invaders of pure phytoplankton cultures when exposed to outdoor conditions. Whilst this would vary with different sites, our experiences with these methods have consistently been favourable. Mass microalgal cultures with eco-physiological youth are used to regularly augment larval fish cultures so that rearing conditions simulate an exponential growth-phase microalgal bloom. Moderate to heavy aeration prevents settlement of particulate matter and encourages aerobic bacterial decomposition of wastes. The green-water larval rearing approach described herein has demonstrated high practical utility in research and commercial applications, and has greatly simplified marine finfish hatchery operations whilst generally lifting production capacities for metamorphosed fry in Australia. Its potential uses in areas of aquaculture other than larviculture are also discussed.
Resumo:
Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5-6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.
Resumo:
The volatile components of the mandibular gland secretion generated by the Giant Ichneumon parasitoid wasp Megarhyssa nortoni nortoni Cresson are mainly spiroacetals and methyl ketones, and all have an odd number of carbon atoms. A biosynthetic scheme rationalizing the formation of these diverse components is presented. This scheme is based on the results of incorporation studies using 2H-labeled precursors and [18O]dioxygen. The key steps are postulated to be decarboxylation of β-ketoacid equivalents, β-oxidation (chain shortening), and monooxygenase-mediated hydroxylation leading to a putative ketodiol that cyclizes to spiroacetals. The generality of the role of monooxygenases in spiroacetal formation in insects is considered, and overall, a cohesive, internally consistent theory of spiroacetal generation by insects is presented, against which future hypotheses will have to be compared.
Resumo:
A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004-2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus-B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites.
Resumo:
A new culture method for lesser mealworm, Alphitobius diaperinus (Panzer), was developed to provide large numbers of adult lesser mealworms of approximately the same age for insecticide resistance testing. Culturing entailed allowing 100 adults to reproduce for 4 days in a wheat-based culture medium contained inside a plastic culture box, removing the adults from the medium, and then rearing their progeny to adulthood therein, in approximately 56 days at 32 degrees C and 55% RH. During their development, progeny were supplied water via apple slices at 0, 21 and 35 days, and a foam substrate in which to pupate, also at 35 days. During 2004-2005, adult lesser mealworms were collected from six broiler-house populations and then cultured with this method. Each population produced 4500 adults required to complete resistance testing with one insecticide within ten culture boxes, at an average of 798 adults per culture box.
Resumo:
Our evaluation of the predation of calves by wild dogs in the 1990s found that the number of calves killed and frequency of years that calf losses occurred, is higher in baited areas compared to adjoining, non-baited areas of similar size. Calf losses were highest with poor seasonal conditions, low prey numbers and where baited areas were re-colonised by wild dogs soon after baiting. We monitored wild dog “activity” before and after 35 baiting programs in southwest, central west and far north Queensland between 1994 and 2006 and found change in activity depends on the timing of the baiting. Baiting programs conducted between October and April show an increase in dog activity post-baiting (average increase of 219.1%, SEM 100.9, n=9, for programs conducted in October and November; an increase of 82.5%, SEM 54.5, n=7 for programs conducted in March and April; and a decrease in activity of 46.5%, SEM 10.2, n=19 for programs conducted between May and September). We monitored the seasonal activity and dispersal of wild dogs fitted with satellite transmitters 2006 to present. We have found that: • Activity of breeding males and females, whilst rearing and nurturing pups, is focussed around the den between July to September and away from areas of human activity. Activity of breeding groups appears to avoid locations of human activity until juveniles become independent (around late November). • While independent and solitary yearlings often have unstable, elliptically-shaped territories in less favourable areas, members of breeding groups have territories that appear seasonally stable and circular located in more favourable habitats. • Extra-territorial forays of solitary yearlings can be huge, in excess of 200 km. The largest forays we have monitored have occurred when the activity of pack members is focussed around rearing pups and juveniles (August to November). • Where wild dogs have dispersed or had significant territorial expansion, it has occurred within days of baiting programs and onto recently baited properties. • The wild dogs we have tracked have followed netting barrier fences for hundreds of kilometres and lived adjacent to or bypassed numerous grids in the barrier. Based on these studies, we conclude that a proportion of the perceived decline in dog activity between May and September, post baiting, is due to a decline in dog activity in areas associated with human activity. The increase in dog activity post-baiting between October and May (and increased calf predation on baited properties) is likely caused by wild dogs dispersing (juveniles and yearlings) or expanding (adults) their territory into baited, now ‘vacant’, areas. We hypothesise that baiting programs should be focussed in summer and autumn commencing late November as soon as juveniles become independent of adults. We also hypothesise that instead of large, annual or semi-annual baiting programs, laying the same number of baits over 4-6 weeks may be more effective. These hypotheses need to be tested through an adaptive management project.