5 resultados para Panicum maximum Jacq.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different degrees of severity of threshing were imposed during combine-harvesting of seed of Gatton panic, a cultivar of Panicum maximum , to determine effects of degree of threshing damage on subsequent properties of seed. Threshing cylinder peripheral speeds and concave clearances covering the normal range employed commercially were varied experimentally in the harvest of 2 crops grown in north Queensland. Harvested seed was dried and cleaned, then stored under ambient conditions. The extent of physical damage was measured, and samples were tested at intervals for viability, germination, dormancy and seedling emergence from soil in a glasshouse and in the field over the 2 seasons following harvest. Physical damage increased as peripheral rotor speed rose and (though less markedly) as concave clearance was reduced. As the level of damage increased, viability was progressively reduced, life expectancy was shortened, and dormancy was broken. When the consequences were measured as seedling emergence from soil, the adverse effects on viability tended to cancel out the benefits of dormancy-breaking, leaving few net differences attributable to the degree of threshing severity. We concluded that there would be no value in trying to manipulate the quality of seed produced for normal commercial use through choice of cylinder settings, but that deliberate light or heavy threshing could benefit special-purpose seed, destined, respectively, for long-term storage or immediate use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three drafts of Bos indicus cross steers (initially 178-216 kg) grazed Leucaena-grass pasture [Leucaena leucocephala subspecies glabrata cv. Cunningham with green panic (Panicum maximum cv. trichoglume)] from late winter through to autumn during three consecutive years in the Burnett region of south-east Queensland. Measured daily weight gain (DWGActual) of the steers was generally 0.7-1.1 kg/day during the summer months. Estimated intakes of metabolisable energy and dry matter (DM) were calculated from feeding standards as the intakes required by the steers to grow at the DWGActual. Diet attributes were predicted from near infrared reflectance spectroscopy spectra of faeces (F.NIRS) using established calibration equations appropriate for northern Australian forages. Inclusion of some additional reference samples from cattle consuming Leucaena diets into F.NIRS calibrations based on grass and herbaceous legume-grass pastures improved prediction of the proportion of Leucaena in the diet. Mahalanobis distance values supported the hypothesis that the F.NIRS predictions of diet crude protein concentration and DM digestibility (DMD) were acceptable. F.NIRS indicated that the percentage of Leucaena in the diet varied widely (10-99%). Diet crude protein concentration and DMD were usually high, averaging 12.4 and 62%, respectively, and were related asymptotically to the percentage of Leucaena in the diet (R2 = 0.48 and 0.33, respectively). F.NIRS calibrations for DWG were not satisfactory to predict this variable from an individual faecal sample since the s.e. of prediction were 0.33-0.40 kg/day. Cumulative steer liveweight (LW) predicted from F.NIRS DWG calibrations, which had been previously developed with tropical grass and grass-herbaceous legume pastures, greatly overestimated the measured steer LW; therefore, these calibrations were not useful. Cumulative steer LW predicted from a modified F.NIRS DWG calibration, which included data from the present study, was strongly correlated (R2 = 0.95) with steer LW but overestimated LW by 19-31 kg after 8 months. Additional reference data are needed to develop robust F.NIRS calibrations to encompass the diversity of Leucaena pastures of northern Australia. In conclusion, the experiment demonstrated that F.NIRS could improve understanding of diet quality and nutrient intake of cattle grazing Leucaena-grass pasture, and the relationships between nutrient supply and cattle growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thirty-seven surface (0-0.10 or 0-0.20 m) soils covering a wide range of soil types (16 Vertosols, 6 Ferrosols, 6 Dermosols, 4 Hydrosols, 2 Kandosols, 1 Sodosol, 1 Rudosol, and 1 Chromosol) were exhaustively cropped in 2 glasshouse experiments. The test species were Panicum maximum cv. Green Panic in Experiment A and Avena sativa cv. Barcoo in Experiment B. Successive forage harvests were taken until the plants could no longer grow in most soils because of severe potassium (K) deficiency. Soil samples were taken prior to cropping and after the final harvest in both experiments, and also after the initial harvest in Experiment B. Samples were analysed for solution K, exchangeable K (Exch K), tetraphenyl borate extractable K for extraction periods of 15 min (TBK15) and 60 min (TBK60), and boiling nitric acid extractable K (Nitric K). Inter-correlations between the initial levels of the various soil K parameters indicated that the following pools were in sequential equilibrium: solution K, Exch K, fast release fixed K [estimated as (TBK15-Exch K)], and slow release fixed K [estimated as (TBK60-TBK15)]. Structural K [estimated as (Nitric K-TBK60)] was not correlated with any of the other pools. However, following exhaustive drawdown of soil K by cropping, structural K became correlated with solution K, suggesting dissolution of K minerals when solution K was low. The change in the various K pools following cropping was correlated with K uptake at Harvest 1 ( Experiment B only) and cumulative K uptake ( both experiments). The change in Exch K for 30 soils was linearly related to cumulative K uptake (r = 0.98), although on average, K uptake was 35% higher than the change in Exch K. For the remaining 7 soils, K uptake considerably exceeded the change in Exch K. However, the changes in TBK15 and TBK60 were both highly linearly correlated with K uptake across all soils (r = 0.95 and 0.98, respectively). The slopes of the regression lines were not significantly different from unity, and the y-axis intercepts were very small. These results indicate that the plant is removing K from the TBK pool. Although the change in Exch K did not consistently equate with K uptake across all soils, initial Exch K was highly correlated with K uptake (r = 0.99) if one Vertosol was omitted. Exchangeable K is therefore a satisfactory diagnostic indicator of soil K status for the current crop. However, the change in Exch K following K uptake is soil-dependent, and many soils with large amounts of TBK relative to Exch K were able to buffer changes in Exch K. These soils tended to be Vertosols occurring on floodplains. In contrast, 5 soils (a Dermosol, a Rudosol, a Kandosol, and 2 Hydrosols) with large amounts of TBK did not buffer decreases in Exch K caused by K uptake, indicating that the TBK pool in these soils was unavailable to plants under the conditions of these experiments. It is likely that K fertiliser recommendations will need to take account of whether the soil has TBK reserves, and the availability of these reserves, when deciding rates required to raise exchangeable K status to adequate levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The variation in liveweight gain in grazing beef cattle as influenced by pasture type, season and year effects has important economic implications for mixed crop-livestock systems and the ability to better predict such variation would benefit beef producers by providing a guide for decision making. To identify key determinants of liveweight change of Brahman-cross steers grazing subtropical pastures, measurements of pasture quality and quantity, and diet quality in parallel with liveweight were made over two consecutive grazing seasons (48 and 46 weeks, respectively), on mixed Clitoria ternatea/grass, Stylosanthes seabrana/grass and grass swards (grass being a mixture of Bothriochloa insculpta cv. Bisset, Dichanthium sericeum and Panicum maximum var. trichoglume cv. Petrie). Steers grazing the legume-based pastures had the highest growth rate and gained between 64 and 142 kg more than those grazing the grass pastures in under 12 months. Using an exponential model, green leaf mass, green leaf %, adjusted green leaf % (adjusted for inedible woody legume stems), faecal near infrared reflectance spectroscopy predictions of diet crude protein and diet dry matter digestibility, accounted for 77, 74, 80, 63 and 60%, respectively, of the variation in daily weight gain when data were pooled across pasture types and grazing seasons. The standard error of the regressions indicated that 95% prediction intervals were large (+/- 0.42-0.64 kg/head.day) suggesting that derived regression relationships have limited practical application for accurately estimating growth rate. In this study, animal factors, especially compensatory growth effects, appeared to have a major influence on growth rate in relation to pasture and diet attributes. It was concluded that predictions of growth rate based only on pasture or diet attributes are unlikely to be accurate or reliable. Nevertheless, key pasture attributes such as green leaf mass and green leaf% provide a robust indication of what proportion of the potential growth rate of the grazing animals can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common to model the dynamics of fisheries using natural and fishing mortality rates estimated independently using two separate analyses. Fishing mortality is routinely estimated from widely available logbook data, whereas natural mortality estimations have often required more specific, less frequently available, data. However, in the case of the fishery for brown tiger prawn (Penaeus esculentus) in Moreton Bay, both fishing and natural mortality rates have been estimated from logbook data. The present work extended the fishing mortality model to incorporate an eco-physiological response of tiger prawn to temperature, and allowed recruitment timing to vary from year to year. These ecological characteristics of the dynamics of this fishery were ignored in the separate model that estimated natural mortality. Therefore, we propose to estimate both natural and fishing mortality rates within a single model using a consistent set of hypotheses. This approach was applied to Moreton Bay brown tiger prawn data collected between 1990 and 2010. Natural mortality was estimated by maximum likelihood to be equal to 0.032 ± 0.002 week−1, approximately 30% lower than the fixed value used in previous models of this fishery (0.045 week−1).