7 resultados para PROBABILISTIC NETWORKS

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many statistical forecast systems are available to interested users. In order to be useful for decision-making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and their statistical manifestation have been firmly established, the forecasts must also provide some quantitative evidence of `quality’. However, the quality of statistical climate forecast systems (forecast quality) is an ill-defined and frequently misunderstood property. Often, providers and users of such forecast systems are unclear about what ‘quality’ entails and how to measure it, leading to confusion and misinformation. Here we present a generic framework to quantify aspects of forecast quality using an inferential approach to calculate nominal significance levels (p-values) that can be obtained either by directly applying non-parametric statistical tests such as Kruskal-Wallis (KW) or Kolmogorov-Smirnov (KS) or by using Monte-Carlo methods (in the case of forecast skill scores). Once converted to p-values, these forecast quality measures provide a means to objectively evaluate and compare temporal and spatial patterns of forecast quality across datasets and forecast systems. Our analysis demonstrates the importance of providing p-values rather than adopting some arbitrarily chosen significance levels such as p < 0.05 or p < 0.01, which is still common practice. This is illustrated by applying non-parametric tests (such as KW and KS) and skill scoring methods (LEPS and RPSS) to the 5-phase Southern Oscillation Index classification system using historical rainfall data from Australia, The Republic of South Africa and India. The selection of quality measures is solely based on their common use and does not constitute endorsement. We found that non-parametric statistical tests can be adequate proxies for skill measures such as LEPS or RPSS. The framework can be implemented anywhere, regardless of dataset, forecast system or quality measure. Eventually such inferential evidence should be complimented by descriptive statistical methods in order to fully assist in operational risk management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount and timing of early wet-season rainfall are important for the management of many agricultural industries in north Australia. With this in mind, a wet-season onset date is defined based on the accumulation of rainfall to a predefined threshold, starting from 1 September, for each square of a 1° gridded analysis of daily rainfall across the region. Consistent with earlier studies, the interannual variability of the onset dates is shown to be well related to the immediately preceding July-August Southern Oscillation index (SOI). Based on this relationship, a forecast method using logistic regression is developed to predict the probability that onset will occur later than the climatological mean date. This method is expanded to also predict the probabilities that onset will be later than any of a range of threshold dates around the climatological mean. When assessed using cross-validated hindcasts, the skill of the predictions exceeds that of climatological forecasts in the majority of locations in north Australia, especially in the Top End region, Cape York, and central Queensland. At times of strong anomalies in the July-August SOI, the forecasts are reliably emphatic. Furthermore, predictions using tropical Pacific sea surface temperatures (SSTs) as the predictor are also tested. While short-lead (July-August predictor) forecasts are more skillful using the SOI, long-lead (May-June predictor) forecasts are more skillful using Pacific SSTs, indicative of the longer-term memory present in the ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 5 million timber utility poles are currently in-service throughout Australia’s energy networks. Most were produced from select native forest-grown hardwood species having the required structural characteristics and naturally-durable heartwood. Anecdotal evidence suggests that up to 70% of the timber poles that are currently in-service were installed over the 20 years following the end of World War Two, and these poles are likely to require replacement or remedial maintenance over the next decade. The purposes of this review were to clarify the supply and demand situation for traditional timber poles, and to investigate alternatives in terms of their potential availability and suitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogens and pests of stored grains move through complex dynamic networks linking fields, farms, and bulk storage facilities. Human transport and other forms of dispersal link the components of this network. A network model for pathogen and pest movement through stored grain systems is a first step toward new sampling and mitigation strategies that utilize information about the network structure. An understanding of network structure can be applied to identifying the key network components for pathogen or pest movement through the system. For example, it may be useful to identify a network node, such as a local grain storage facility, through which grain from a large number of fields will be accumulated and move through the network. This node may be particularly important for sampling and mitigation. In some cases more detailed information about network structure can identify key nodes that link two large sections of the network, such that management at the key nodes will greatly reduce the risk of spread between the two sections. In addition to the spread of particular species of pathogens and pests, we also evaluate the spread of problematic subpopulations, such as subpopulations with pesticide resistance. We present an analysis of stored grain pathogen and pest networks for Australia and the United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheat is at peak quality soon after harvest. Subsequently, diverse biota use wheat as a resource in storage, including insects and mycotoxin-producing fungi. Transportation networks for stored grain are crucial to food security and provide a model system for an analysis of the population structure, evolution, and dispersal of biota in networks. We evaluated the structure of rail networks for grain transport in the United States and Eastern Australia to identify the shortest paths for the anthropogenic dispersal of pests and mycotoxins, as well as the major sources, sinks, and bridges for movement. We found important differences in the risk profile in these two countries and identified priority control points for sampling, detection, and management. An understanding of these key locations and roles within the network is a new type of basic research result in postharvest science and will provide insights for the integrated pest management of high-risk subpopulations, such as pesticide-resistant insect pests.