12 resultados para PLACEMENT
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Vialaea minutella was consistently isolated from infected mango trees showing branch dieback symptoms in northern Queensland. The fungus was identified by morphology and confirmed with molecular sequence data. This is the first report of V. minutella in Australia. The systematic position of Vialaea was confirmed to be in the Xylariales based on reconstructed LSU sequence data.
Resumo:
Graminicolous downy mildews (GDM) are an understudied, yet economically important, group of plant pathogens, which are one of the major constraints to poaceous crops in the tropics and subtropics. Here we present a first molecular phylogeny based on cox2 sequences comprising all genera of the GDM currently accepted, with both lasting (Graminivora, Poakatesthia, and Viennotia) and evanescent (Peronosclerospora, Sclerophthora, and Sclerospora) sporangiophores. In addition, all other downy mildew genera currently accepted, as well as a representative sample of other oomycete taxa, have been included. It was shown that all genera of the GDM have had a long, independent evolutionary history, and that the delineation between Peronosclerospora and Sclerospora is correct. Sclerophthora was found to be a particularly divergent taxon nested within a paraphyletic Phytophthora, but without support. The results confirm that the placement of Peronosclerospora and Sclerospora in the Saprolegniomycetidae is incorrect. Sclerophthora is not closely related to Pachymetra of the family Verrucalvaceae, and also does not belong to the Saprolegniomycetidae, but shows close affinities to the Peronosporaceae. In addition, all GDM are interspersed throughout the Peronosporaceae s lat., suggesting that a separate family for the Sclerosporaceae might not be justified.
Resumo:
Two new species are described in each of the closely related genera Nanexila Winterton & Irwin and Taenogera Krober. Nanexila atricauda sp. nov. and Nanexila jimrodmani sp. nov. are described. The phylogenetic placement and diagnostic characteristics of these new species and other species recently transferred to Nanexila are discussed. Taenogera luteola sp. nov. and Taenogera brunnea sp. nov. are distinctive species described from female specimens collected in Queensland. Taenogera is diagnosed in light of these new species and a revised key to species presented.
Annellosympodia orbiculata gen. et sp. nov. and Scolecostigmina flagellariae sp. nov. from Australia
Resumo:
Two new fungi, Annellosympodia orbiculata and Scolecostigmina flagellariae, on Acacia ligulata and Flagellaria indica, respectively, from Australia are described and illustrated. The former species is placed in the new genus Annellosympodia, which is characterised by an unusual combination of features, viz. fasciculate conidiogenous cells (conidiophores reduced to conidiogenous cells), holoblastic conidiogenesis with sympodial, but rectilinear proliferation leaving annular structures and lateral conspicuous conidiogenous loci, and rhexolytic conidial secession. The generic placement of these two fungi is discussed.
Resumo:
Prickly acacia, Acacia nilotica subsp. indica (Benth.) Brenan, a major weed of the Mitchell Grass Downs of northern Queensland, Australia, has been the target of biological control projects since the 1980s. The leaf-feeding caterpillar Cometaster pyrula (Hopffer) was collected from Acacia nilotica subsp. kraussiana (Benth.) Brenan during surveys in South Africa to find suitable biological control agents, recognised as a potential agent, and shipped into a quarantine facility in Australia. Cometaster pyrula has a life cycle of approximately 2 months during which time the larvae feed voraciously and reach 6 cm in length. Female moths oviposit a mean of 339 eggs. When presented with cut foliage of 77 plant species, unfed neonates survived for 7 days on only Acacia nilotica subsp. indica and Acacia nilotica subsp. kraussiana. When unfed neonates were placed on potted plants of 14 plant species, all larvae except those on Acacia nilotica subsp. indica and Acacia nilotica subsp. kraussiana died within 10 days of placement. Cometaster pyrula was considered to be highly host specific and safe to release in Australia. Permission to release C. pyrula in Australia was obtained and the insect was first released in north Queensland in October 2004. The ecoclimatic model CLIMEX indicated that coastal Queensland was climatically suitable for this insect but that inland areas were only marginally suitable.
Resumo:
Identifying species boundaries within morphologically indistinguishable cryptic species complexes is often contentious. For the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae), the lack of a clear understanding about the genetic limits of the numerous genetic groups and biotypes so far identified has resulted in a lack of consistency in the application of the terms, the approaches use to apply them and in our understanding of what genetic structure within B. tabaci means. Our response has been to use mitochondrial gene cytochrome oxidase one to consider how to clearly and consistently define genetic separation. Using Bayesian phylogenetic analysis and analysis of sequence pairwise divergence we found a considerably higher to number of genetic groups than had been previously determined with two breaks in the distribution, one at 11% and another at 3.5%. At >11% divergence, 11 distinct groups were resolved, whereas at >3.5% divergence 24 groups were identified. Consensus sequences for each of these groups were determined and were shown to be useful in the correct assignment of sequences of unknown origin. The 3.5% divergence bound is consistent with species level separations in other insect taxa and Suggests that B. tabaci is it cryptic species composed of at least 24 distinct species. We further show that the placement of Bemesia atriplex (Froggatt) within the B. tabaci in, group adds further weight to the argument for species level separation within B. tabaci. This new analysis, which constructs consensus sequences and uses these its a standard against which unknown sequences call be compared, provides for the first time it consistent means of identifying the genetic hounds of each species with it high degree of certainty.
Resumo:
Bush Blitz is a three-year multimillion dollar program to document the plants and animals in hundreds of properties across Australia's National Reserve System. The core focus is on nature discovery identifying and describing new species of plants and animals. The Bush Blitz program has enabled the collection and description of beeflies (Diptera, Bombyliidae) from surveys in Western Australia and Queensland. Three new species of Australian beeflies belonging to the Exoprosopini are described; Palirika mackenziei Lambkin, sp. n., Palirika culgoafloodplainensis lambkin, sp. n., and Larrpana bushblitz Lambkin, sp. n. Phylogenetic analysis of 40 Australian exoprosopine species belonging to the Balaana generic-group Lambkin & Yeates, 2003 supports the placement of the three new species into existing genera, and the erection and description of the new genus Ngalki Lambkin, gen. n. for Ngalki trigonium (Lambkin & Yeates, 2003), comb. n. Revised keys are provided for the genera of the Australian Balaana genus-group and the species of Palirika Lambkin & Yeates, 2003 and Larrpana Lambkin & Yeates, 2003. With the description of the three new species and the transferral of Munjua trigona Lambkin & Yeates, 2003 into the new genus Ngalki Lambkin, gen. n., three genera are rediagnosed; Munjua Lambkin & Yeates, 2003, Palirika and Larrpana.
Resumo:
The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological approach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi.
Resumo:
Spinosad, diatomaceous earth, and cyfluthrin were assessed on two broiler farms at Gleneagle and Gatton in southeastern Queensland, Australia in 2004-2005 and 2007-2009, respectively to determine their effectiveness in controlling lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Insecticide treatments were applied mostly to earth or 'hard' cement floors of broiler houses before the placement of new bedding. Efficacy of each agent was assessed by regular sampling of litter and counting of immature stages and adult beetles, and comparing insect counts in treatments to counts in untreated houses. Generally, the lowest numbers of lesser mealworm were recorded in the house with hard floors, these numbers equalling the most effective spinosad applications. The most effective treatment was a strategic application of spinosad under feed supply lines on a hard floor. In compacted earth floor houses, mean numbers of lesser mealworms for two under-feed-line spinosad treatments (i.e., 2-m-wide application at 0.18 g of active insecticide (g [AI]) in 100-ml water/m(2), and 1-m-wide application at 0.11 g ([AI] in 33-ml water/m(2)), and an entire floor spinosad treatment (0.07 g [AI] in 86-ml water/m2) were significantly lower (i.e., better control) than those numbers for cyfluthrin, and no treatment (controls). The 1-m-wide under-feed-line treatment was the most cost-effective dose, providing similar control to the other two most effective spinosad treatments, but using less than half the active component per broiler house. No efficacy was demonstrated when spinosad was applied to the surface of bedding in relatively large volumes of water. All applications of diatomaceous earth, applied with and without spinosad, and cyfluthrin at the label rate of 0.02 g (AI)/100-ml water/m(2) showed no effect, with insect counts not significantly different to untreated controls. Overall, the results of this field assessment indicate that cyfluthrin (the Australian industry standard) and diatomaceous earth were ineffective on these two farms and that spinosad can be a viable alternative for broiler house use.
Resumo:
Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victoria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, flowers and fruits of 28 host species. Morphological and molecular characteristics were used to confirm the identification of P. psidii from a range of Myrtaceae in Qld and compared with isolates from NSW and overseas. A reconstructed phylogeny based on the LSU and SSU regions of rDNA did not resolve the familial placement of P. psidii, but indicated that it does not belong to the Pucciniaceae. Uredo rangelii was found to be con-specific with all isolates of P. psidii in morphology, ITS and LSU sequence data, and host range.
Resumo:
Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naive natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Cade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene similar to 21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
An emended description of the genus Anomalomyces is given to accommodate a new species of smut fungus, Anomalomyces yakirrae, on Yakirra pauciflora ( Poaceae) from Australia. The systematic placement of the fungus within the genus Anomalomyces is based on morphological characters and molecular data from two loci.