4 resultados para PINNA-NOBILIS
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P<0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 degrees C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg(-1) FW h(-1)) and declined gradually there-after during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P=0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P<0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These. compounds have previously been associated with desirable floral scent. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.
Resumo:
Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.
Resumo:
A small population of tall slender conifers was discovered in 1994 in a deep rainforest canyon of the Wollemi National Park, New SouthWales, Australia. The living trees closely resembled fossils that were more than 65 million years old, and this ‘living fossil’ was recognised as a third extant genus in the Araucariaceae (Araucaria, Agathis and now Wollemia). The species was named the Wollemi pine (W. nobilis). Extensive searches uncovered very few populations, with the total number of adult trees being less than 100. Ex situ collections were quickly established in Sydney as part of the Wollemi Pine Recovery Plan. The majority of the ex situ population was later transferred to our custom-built facility in Queensland for commercial multiplication. Domestication has relied very heavily on the species’ amenability to vegetative propagation because seed collection from the natural populations is dangerous, expensive, and undesirable for conservation reasons. Early propagation success was poor, with only about 25% of cuttings producing roots. However, small increases in propagation success have a very large impact on a domestication program because plant production can be modelled on an exponential curve where each rooted cutting develops into a mother plant that, in turn, provides more rooted cuttings. An extensive research program elevated rooting percentages to greater than 80% and also provided in vitro methods for plant multiplication. These successes have enabled international release of the Wollemi pine as a new and attractive species for ornamental horticulture.