3 resultados para PHAGE DISPLAY
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Avibacterium paragallinarum is the causative agent of infectious coryza. The protective antigens of this important pathogen have not yet been clearly identified. In this paper, we applied phage display technique to screen the immunodominant mimotopes of a serovar A strain of A. paragallinarum by using a random 12-peptide library, and evaluated the immunogenicity in chickens of the selected mimotope. Polyclonal antibody directed against A. paragallinarum strain 0083 (serovar A) was used as the target antibody and phage clones binding to this target were screened from the 12-mer random peptide library. More than 50% of the phage clones selected in the third round carried the consensus peptide motif sequence A-DP(M)L. The phage clones containing the peptide motif reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by A. paragallinarum. One of the peptide sequences, YGLLAVDPLFKP, was selected and the corresponding oligonucleotide sequence was synthesized and then inserted into the expression vector pFliTrx. The recombinant plasmid was transferred into an expression host Escherichia coli GI826 by electroporation, resulting in a recombinant E. coli expressing the peptide on the bacterial surface. Intramuscular injection of the epitope-expressing recombinant bacteria into chickens induced a specific serological response to serovar A. A. paragallinarum. The chickens given the recombinant E. coli showed significant protection against challenge with A. paragallinarum 0083. These results indicated a potential for the use of the mimotope in the development of molecular vaccines for infectious coryza.
Resumo:
Viruses of prokaryotes (phages) are obligate microbial pathogens that can, in the lytic phase of development, infect and lyse their respective bacterial or archaeal hosts. As such, these viruses can reduce the population density of their hosts rapidly, and have been viewed as possible agents of biological control (phage therapy). Phage therapy is becoming increasingly important as a means of eradicating or controlling microbial populations as the use of antibiotics and chemical treatments becomes both less effective and less publicly acceptable. Phage therapy has therefore been raised as a potential strategy to reduce methane (CH 4) emissions from ruminants, providing an innovative biological approach, harnessing the potent, yet targeted, biocidal attributes of these naturally occurring microbial predators.
Resumo:
Viruses of prokaryotes (phages) are obligate microbial pathogens that can, in the lytic phase of development, infect and lyse their respective bacterial or archaeal hosts. As such, these viruses can reduce the population density of their hosts rapidly, and have been viewed as possible agents of biological control (phage therapy). Phage therapy is becoming increasingly important as a means of eradicating or controlling microbial populations as the use of antibiotics and chemical treatments becomes both less effective and less publicly acceptable. Phage therapy has therefore been raised as a potential strategy to reduce methane (CH4) emissions from ruminants, providing an innovative biological approach, harnessing the potent, yet targeted, biocidal attributes of these naturally occurring microbial predators.