1 resultado para PARTITION
em eResearch Archive - Queensland Department of Agriculture
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archive of European Integration (1)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (51)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CentAUR: Central Archive University of Reading - UK (46)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (28)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (11)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (14)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (16)
- Harvard University (8)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (17)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (20)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (63)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (153)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- Scielo Saúde Pública - SP (46)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (9)
- Universidade dos Açores - Portugal (3)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (18)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (35)
- Université de Montréal (1)
- Université de Montréal, Canada (38)
- University of Connecticut - USA (2)
- University of Michigan (27)
- University of Queensland eSpace - Australia (59)
- University of Southampton, United Kingdom (1)
- University of Washington (5)
Resumo:
Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.