3 resultados para Orvis Brothers

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-ripe â˜Kensington Prideâ mango (Mangifera indica L.) fruit with green skin colour generally return lower wholesale and retail prices. Pre-harvest management, especially nitrogen (N) nutrition, appears to be a major causal factor. To obtain an understanding of the extent of the problem in the Burdekin district (dry tropics; the major production area in Australia), green mature â˜Kensington Prideâ mango fruit were harvested from ten orchards and ripened at 20 ± 0.5 O C. Of these orchards, 70% produced fruit with more than 25% of the skin surface area green when ripe. The following year, the effect of N application on skin colour and other quality attributes was investigated on three orchards, one with a high green (HG) skin problem and two with a low green (LG) skin problem. N was applied at pre-flowering and at panicle emergence at the rate of 0,75,150,300 g per tree (soil applied) or 50 g per tree as foliar N for the HG orchard, and 0,150,300,450 g per tree (soil applied) or 50 g per tree (foliar) for the LG orchards. In all orchards the proportion of green colour on the ripe fruit was significantly (P<0.05) higher with soil applications of 150 g N or more per tree. Foliar sprays resulted in a higher proportion of green colour than the highest soil treatment in the HG orchard, but not in the LG orchards. Anthracnose disease severity was significantly (P<0.05) higher with 300 g of N per tree or foliar treatment in the HG orchard, compared with no additional N. Thus, N can reduce mango fruit quality by increasing green colour and anthracnose disease in ripe fruit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenicity of three isolates of Alternaria alternata from Backhousia myrtifolia leaves was characterised and compared. Isolate BRIP 52222 was virulent compared to isolates BRIP 52223 and BRIP 52221. A comparison of inoculation methods showed that abrasion was more effective at establishing an infection than puncture wounding. Koch's postulates were assessed to confirm the pathogenicity of A. alternata on B. myrtifolia foliage and floral tissues using a conidial suspension of the most virulent isolate. Sporulation was triggered by incubating A. alternata (BRIP 52222) at 28 degrees C for 10 d under alternating 12 h black-light/12 h dark conditions on half-strength potato dextrose agar (PDA). In contrast, incubation of A. alternata under continuous black-light on either half- or full-strength PDA did not yield conidia. Host symptoms caused by inoculation with the pathogen included a brown-black discolouration of both foliage and floral tissues. Microscopic examination of cellular structures suggested that perturbation of oil glands may contribute to the tissue discolouration in B. myrtifolia caused by A. alternata infection. Oil gland structures can be disrupted during an active A. alternata infection, causing the leakage of essential oil followed by discolouration.