5 resultados para Optimal control extensions
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Three field trials were conducted over 12 months to assess the pathogenicity of Metarhizium anisopliae to parasitic stages of Rhipicephalus (Boophilus) microplus on dairy heifers under different environmental conditions. Two isolates were selected based on their high optimal growth temperature (30 °C), good spore production characteristics and ability to quickly kill adult engorged ticks in the laboratory. Spores were formulated in an oil emulsion and applied using a motor driven spray unit. Surface temperatures of selected animals were monitored, as were the ambient temperature and relative humidity. Unengorged ticks sampled from each animal immediately after treatment were incubated in the laboratory to assess the efficacy of the formulation and application. Egg production by engorged ticks collected in the first 3 days after treatment was monitored. Side counts of standard adult female ticks were conducted daily, before and after treatment to assess the performance of the fungus against all tick stages on the animals. In each trial the formulation rapidly caused 100% mortality in unengorged ticks that were removed from cattle and cultured in the laboratory. A significant reduction in egg production was recorded for engorged ticks collected in the 3 days post-treatment. However, there was little effect of the formulation on the survival of ticks on cattle, indicating that there is an interaction between the environment of the ticks on the cattle and the biopesticide, which reduces its efficacy against ticks.
Resumo:
Hydroponic production systems offer optimal conditions for rapid growth, protection from adverse weather and greater water use efficiency. The most important limitation for hydroponic production production is water borne disease. Water borne disease can rapidly spread causing up to 100% crop failure.
Resumo:
Aim: Effective decisions for managing invasive species depend on feedback about the progress of eradication efforts. Panetta & Lawes. developed the eradograph, an intuitive graphical tool that summarizes the temporal trajectories of delimitation and extirpation to support decision-making. We correct and extend the tool, which was affected by incompatibilities in the units used to measure these features that made the axes impossible to interpret biologically. Location: Victoria, New South Wales and Queensland, Australia. Methods: Panetta and Lawes' approach represented delimitation with estimates of the changes in the area known to be infested and extirpation with changes in the mean time since the last detection. We retain the original structure but propose different metrics that improve biological interpretability. We illustrate the methods with a hypothetical example and real examples of invasion and treatment of branched broomrape (Orobanche ramosa L.) and the guava rust complex (Puccinia psidii (Winter 1884)) in Australia. Results: These examples illustrate the potential of the tool to guide decisions about the effectiveness of search and control activities. Main conclusions: The eradograph is a graphical data summary tool that provides insight into the progress of eradication. Our correction and extension of the tool make it easier to interpret and provide managers with better decision support. © 2013 John Wiley & Sons Ltd.
Resumo:
There are currently limited options for the control of the invasive tropical perennial sedge 'Cyperus aromaticus' (Ridley) Mattf. and Kukenth (Navua sedge). The potential for halosulfuron-methyl as a selective herbicide for Navua sedge control in tropical pastures was investigated by undertaking successive field and shade house experiments in North Queensland, Australia. Halosulfuron-methyl and adjuvant rates, and combinations with other herbicides, were examined to identify a herbicide regime that most effectively reduced Navua sedge. Our research indicated that combining halosulfuron- methyl with other herbicides did not improve efficacy for Navua sedge control. We also identified that low rates of halosulfuron-methyl (25 g ha-1 a.i.) were just as effective as higher rates (73 g ha-1 a.i.) at controlling the sedge, and that this control relied on the addition of the adjuvant Bonza at the recommended concentration (1% of the spray volume). Pot trials in the controlled environment of the shade house achieved total mortality under these regimes. Field trials demonstrated more variable results with reductions in Navua sedge ranging between 40-95% at 8-10 weeks after treatment. After this period (16-24 weeks after treatment), regrowth of sedge, either from newly germinated seed, or of small plants protected from initial treatment, indicated sedge populations can rapidly increase to levels similar to pre-application, depending on the location and climatic conditions. Such variable results highlight the need for concerted monitoring of pastures to identify optimal treatment times. Ideally, initial treatment should be done when the sedge is healthy and actively growing, with follow up-treatments applied when new seed heads are produced from regrowth.
Resumo:
Trichoderma isolates were obtained from diseased leaves and fruit collected from plantations in the main banana production area in Northern Queensland. Phylogenetic analyses identified the Trichoderma isolates as T. harzianum and T. virens. The Trichoderma spp. were found to be antagonistic against the banana leaf pathogens Mycosphaerella musicola, Cordana musae, and Deight-oniella torulosa in vitro. Several products used by the banana industry to increase production, including molasses, Fishoil and Seasol, were tested as food source for the Trichoderma isolates. The optimal food substrate was found to be molasses at a concentration of 5 %, which when used in combination with a di-1-p-menthene spreader-sticker enhanced the survivability of Trichoderma populations under natural conditions. This formulation suppressed D. torulosa development under glasshouse conditions. Furthermore, high sensitivity was observed towards the protectant fungicide Mancozeb but Biopest oil (R), a paraffinic oil, only marginally suppressed the growth of Trichoderma isolates in vitro. Thus, this protocol represents a potential to manage banana leaf pathogens as a part of an integrated disease approach.