14 resultados para Oil well cementing. Saline oil well cement slurries. Microestructural characterization
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The fatty acid composition of ground nuts (Arachis hypogaea L.) commonly known as peanuts, is an important consideration when a new variety is being released. The composition impacts on nutrition and, importantly, self-life of peanut products. To select for suitable breeding material, it was necessary to develop a rapid, non-derstructive and cost-efficient method. Near infrared spectroscopy was chosen as that methodology. Calibrations were developed for two major fatty-acid components, oleic and linoleic acids and two minor components, palmitic and stearic acids, as well as total oil content. Partial least squares models indicated a high level of precision with a squared multiple correlation coefficient of greater than 0.90 for each constitutent. Standard errors for prediction for oleic, linoleic, palmitic, stearic acids and total oil content were 6.4%, 4.5%, 0.8%, 0.9% and 1.3% respectively. The results demonstrated that reasonable calibrations could be developed to predict oil composition and content of peanuts for a breeding programme.
Resumo:
The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ginger oil, obtained by steam distillation of the rhizome of Zingiber officinale Roscoe, is used in the beverage and fragrance industries. Ginger oil displays considerable compositional diversity, but is typically characterized by a high content of sesquiterpene hydrocarbons, including zingiberene, arcurcumene, â-bisabolene, and â-sesquiphellandrene. Australian ginger oil has a reputation for possessing a particular “lemony” aroma, due to its high content of the isomers neral and geranial, often collectively referred to as citral. Fresh rhizomes of 17 clones of Australian ginger, including commercial cultivars and experimental tetraploid clones, were steam distilled 7 weeks post-harvest, and the resulting oils were analyzed by GC-MS. The essential oils of 16 of the 17 clones, including the tetraploid clones and their parent cultivar, were found to be of substantially similar composition. These oils were characterized by very high citral levels (51-71%) and relatively low levels of the sesquiterpene hydrocarbons typical of ginger oil. The citral levels of most of these oils exceeded those previously reported for ginger oils. The neral-to-geranial ratio was shown to be remarkably constant (0.61 ( 0.01) across all 17 clones. One clone, the cultivar “Jamaican”, yielded oil with a substantially different composition, lower citral content and higher levels of sesquiterpene hydrocarbons. Because this cultivar also contains significantly higher concentrations of pungent gingerols, it possesses unique aroma and flavor characteristics, which should be of commercial interest.
Resumo:
As part of preliminary work aimed at the development of a formulated diet for the mud crab, Scylla serrata, an experiment was conducted with juvenile mud crabs (95.65±2.17 g) to determine apparent digestibility coefficients (ADC) for cellulose, fish meal, shrimp meal, blood meal, soybean meal, wheat flour and cod liver oil. Apparent digestibility coefficients for dry matter (ADCdm), energy (ADCenergy) and protein (ADC protein) were in the ranges 70.0-95.7%, 77.4-97.1% and 57.7-97.9% respectively. Soybean meal had the highest ADCdm and wheat flour had the lowest value (P<0.05), while the ADCdm for fish meal, blood meal and shrimp meal were not different (P?0.05). Similarly, soybean meal had the same ADCenergy as that of fish meal, but higher than those of cod liver oil, blood meal and shrimp meal (P<0.05). Moreover, the ADC protein for blood meal or shrimp meal were not significantly different from fish meal (P?0.05); nevertheless, they were lower than that of soybean meal and higher than that of wheat flour (P<0.05). Of significant interest was the ADCdm (78.0%) and ADCenergy (77.4%) for cellulose, which indicates that plant-based nutrient sources may well be a useful component of formulated diets for mud crabs.
Resumo:
Trials to identify alternative cropping options to Melaleuca alternifolia for northern Queensland essential oil growers were established at Dimbulah and Innot Hot Springs in 2001. Seed sources of Asteromyrtus symphyocarpa (1,8-cineole form), Eucalyptus staigeriana (citral), Melaleuca cajuputi subsp. cajuputi (trans-nerolidol), M. ericifolia (d-linalool), M. quinquenervia (trans-nerolidol and viridiflorol forms) and M. viridiflora (methyl cinnamate) with potential to produce commercial foliar oils were evaluated. Information was gathered on their adaptability, growth and oil yields over 49 months and 52 months (two harvests) from planting at Dimbulah and Innot Hot Springs, respectively. Of the species and chemotypes evaluated, M. quinquenervia showed potential for commercial production of trans-nerolidol, a compound used in perfumery. It had a very high survival rate (96%) and yields could be expected to improve dramatically from the average 100 kg/ha per harvest achieved in these trials with further research into selection of seed source, control of insect damage and breeding for genetic improvement. M. cajuputi subsp. cajuputi gave a similar performance to M. quinquenervia. The rarity of the trans-nerolidol form of this species and remoteness of its natural occurrence are impediments to further planting and research. E. staigeriana, with second harvest yields of ~600 kg/ha, performed exceptionally well on both sites but potential for development is limited by the ready availability of competitively priced E. staigeriana oil produced in South America. Survival of M. ericifolia ranged from 62% to 82% at 32 months (second harvest) at Innot Hot Springs and was deemed a failure at Dimbulah with poor growth and low survival, raising a major question about the suitability of this species for cultivation in the seasonally dry tropics. Planting of this species on a wider scale in northern Queensland cannot be recommended until more is known about factors affecting its survival. A. symphyocarpa and M. viridiflora were too slow-growing to warrant further consideration as potential oil-producing species at this time.
Resumo:
Soils with high levels of chloride and/or sodium in their subsurface layers are often referred to as having subsoil constraints (SSCs). There is growing evidence that SSCs affect wheat yields by increasing the lower limit of a crop's available soil water (CLL) and thus reducing the soil's plant-available water capacity (PAWC). This proposal was tested by simulation of 33 farmers' paddocks in south-western Queensland and north-western New South Wales. The simulated results accounted for 79% of observed variation in grain yield, with a root mean squared deviation (RMSD) of 0.50 t/ha. This result was as close as any achieved from sites without SSCs, thus providing strong support for the proposed mechanism that SSCs affect wheat yields by increasing the CLL and thus reducing the soil's PAWC. In order to reduce the need to measure CLL of every paddock or management zone, two additional approaches to simulating the effects of SSCs were tested. In the first approach the CLL of soils was predicted from the 0.3-0.5 m soil layer, which was taken as the reference CLL of a soil regardless of its level of SSCs, while the CLL values of soil layers below 0.5 m depth were calculated as a function of these soils' 0.3-0.5 m CLL values as well as of soil depth plus one of the SSC indices EC, Cl, ESP, or Na. The best estimates of subsoil CLL values were obtained when the effects of SSCs were described by an ESP-dependent function. In the second approach, depth-dependent CLL values were also derived from the CLL values of the 0.3-0.5 m soil layer. However, instead of using SSC indices to further modify CLL, the default values of the water-extraction coefficient (kl) of each depth layer were modified as a function of the SSC indices. The strength of this approach was evaluated on the basis of correlation of observed and simulated grain yields. In this approach the best estimates were obtained when the default kl values were multiplied by a Cl-determined function. The kl approach was also evaluated with respect to simulated soil moisture at anthesis and at grain maturity. Results using this approach were highly correlated with soil moisture results obtained from simulations based on the measured CLL values. This research provides strong evidence that the effects of SSCs on wheat yields are accounted for by the effects of these constraints on wheat CLL values. The study also produced two satisfactory methods for simulating the effects of SSCs on CLL and on grain yield. While Cl and ESP proved to be effective indices of SSCs, EC was not effective due to the confounding effect of the presence of gypsum in some of these soils. This study provides the tools necessary for investigating the effects of SSCs on wheat crop yields and natural resource management (NRM) issues such as runoff, recharge, and nutrient loss through simulation studies. It also facilitates investigation of suggested agronomic adaptations to SSCs.
Resumo:
Phenotypic variation in heartwood and essential-oil characters of Santalum austrocaledonicum was assessed across eleven populations on seven islands of Vanuatu Trees differed significantly in their percentage heartwood cross-sectional area and this varied independently of stem diameter The concentrations of the four major essential-oil constituents (alpha-santalol, beta-santalol. (Z)-beta-curcumen-12-ol, and cis-nuciferol) of alcohol-extracted heartwood exhibited at least tenfold and continuous tree-to-tree variation Commercially important components alpha- and beta-santalol found in individual trees ranged from 0 8-47% and 0-24 1%, respectively, across all populations, and significant (P < 0 05) differences for each were found between Individual populations. The Erromango population was unique in that the mean concentrations of its monocyclic ((Z)-beta-curcumen-12-ol and cis-nuciferol) sesquiterpenes exceeded those of Its bi- and tricyclic (alpha- and beta-santalol) sesquiterpenes Heartwood colour varied between trees and spanned 65 colour categories, but no identifiable relationships were found between heartwood colour and alpha- and beta-santalol, although a weak relationship was evident between colour saturation and total oil concentration These results indicate that the heartwood colour is not a reliable predictive trait for oil quality The results of this study highlight the knowledge gaps in fundamental understanding of heartwood biology in Santalum genus The intraspecific variation in heartwood cross-sectional area. oil concentration. and oil quality traits is of considerable importance to the domestication of sandalwood and present opportunities for the development of highly superior S austrocaledonicum cultivars that conform to the industry's International Standards used for S album.
Resumo:
This study aimed to assess the effect of tea tree oil based formulations against two major ectoparasitic diseases in the sheep industry, flystrike and louse infestation, and to provide data to assist the assessment of the commercial feasibility of development of tea tree oil based ectoparasiticides. The results demonstrate insecticidal effects against both sheep lice and blowflies and repellent effects against adult flies and maggots. Dipping sheep in a Tea Tree Oil based formulation appeared to completely eradicate lice and suggests its potential use in sheep dipping formulations. Repellent and insecticidal effects against sheep blowflies, together with previously reported anti-microbial and wound healing properties, suggest significant benefits from the inclusion of tea tree oil in flystrike and wound treatment formulations. These effects occurred at concentrations of Tea Tree Oil that suggest the commercial viability of development of Tea Tree Oil based formulations for sheep parasite control and wound treatment and a potential new market for Tea Tree Oil.
Resumo:
Testing tea tree oil against buffalo flies on cattle.
Resumo:
We used an established seagrass monitoring programme to examine the short and longer-term impacts of an oil spill event on intertidal seagrass meadows. Results for potentially impacted seagrass areas were compared with existing monitoring data and with control seagrass meadows located outside of the oil spill area. Seagrass meadows were not significantly affected by the oil spill. Declines in seagrass biomass and area 1 month post-spill were consistent between control and impact meadows. Eight months post-spill, seagrass density and area increased to be within historical ranges. The declines in seagrass meadows were likely attributable to natural seasonal variation and a combination of climatic and anthropogenic impacts. The lack of impact from the oil spill was due to several mitigating factors rather than a lack of toxic effects to seagrasses. The study demonstrates the value of long-term monitoring of critical habitats in high risk areas to effectively assess impacts.
Resumo:
Mikania micrantha or mile-a-minute is regarded as a major invasive weed in Papua New Guinea (PNG) and is now the target of a biological control program. As part of the program, distribution and physical and socioeconomic impacts of M. micrantha were studied to obtain baseline data and to assist with field release of biological control agents. Through public awareness campaigns and dedicated surveys, M. micrantha has been reported in all 15 lowland provinces. It is particularly widespread in East New Britain, as well as in West New Britain and New Ireland. A CLIMEX model suggests that M. micrantha has the potential to continue to spread throughout all lowland areas in PNG. The weed was found in a wide range of land uses, impacting on plantations and food gardens and smothering papaya, young cocoa, banana, taro, young oil palms, and ornamental plants. In socioeconomic surveys, M. micrantha was found to have severe impacts on crop production and income generated through reduced yields and high weeding costs, particularly in subsistence mixed cropping systems. About 89% of all respondents had M. micrantha on their land, and 71% of respondents had to weed monthly. Approximately 96% of respondents in subsistence mixed cropping systems used only physical means of control compared with 68% of respondents in other farming systems. About 45% of all respondents estimated that M. micrantha causes yield losses in excess of 30%. These studies suggest that there would be substantial benefits to landholders if biological control of M. micrantha were to be successful.
Resumo:
Tea tree oil (TTO) from the Australian native plant Melaleuca alternifolia has wide ranging bio-active properties, including insecticidal and repellent activity against arthropods. Furthermore, composition of commercially available Australian TTO is specified under an International Organization for Standardization standard (ISO 4730), reducing the potential for variable effects often noted with botanical pesticides. The effect of TTO, meeting the ISO standard for terpinen-4-ol chemotype, was tested against sheep lice (Bovicola ovis Schrank) in a series of laboratory studies. Immersion of wool for 60s in formulations containing concentrations of 1% TTO and above caused 100% mortality of adult lice and eggs. Exposure to vapours from TTO, delivered as droplets in fumigation chambers and when applied to wool also caused high mortality in both lice and eggs. The main active component of TTO in the fumigant tests was terpinen-4-ol. Treated surface assays and tests with wool where the formulation was allowed to dry before exposure of lice indicated low persistence. These studies demonstrate that TTO is highly toxic to sheep lice and active at concentrations that suggest potential for the development of TTO-based ovine lousicides. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The present study examines patterns of heritability of plant secondary metabolites following hybridisation among three genetically homogeneous taxa of spotted gum (Corymbia henryi (S.T.Blake) K.D.Hill & L.A.S.Johnson, C. citriodora subsp. variegata (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora (Hook.) K.D.Hill & L.A.S.Johnson subsp. citriodora (section Maculatae), and their congener C. torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson (section Torellianae)). Hexane extracts of leaves of all four parent taxa were statistically distinguishable (ANOSIM: global R = 0.976, P = 0.008). Hybridisation patterns varied among the taxa studied, with the hybrid formed with C. citriodora subsp. variegata showing an intermediate extractive profile between its parents, whereas the profiles of the other two hybrids were dominated by that of C. torelliana. These different patterns in plant secondary-metabolite inheritance may have implications for a range of plant-insect interactions.
Resumo:
The efficacy of chlorothalonil and paraffinic oil alone and in combinations with the registered fungicides propiconazole, tebuconazole, difenoconazole, epoxiconazole and pyrimethanil was evaluated in a field experiment over two cropping cycles in 2013 and 2014 in Northern Queensland, Australia, for control of yellow Sigatoka (caused by Mycosphaerella musicola) of banana. The predominantly applied by the banana industry treatment mancozeb with paraffinic oil was included for comparison. The results from the two cropping cycles suggested that all chemicals used with paraffinic oil were as effective or more effective than when applied with chlorothalonil, and chlorothalonil alone. Difenoconazole and epoxiconazole with paraffinic oil followed by propiconazole with paraffinic oil were the most effective treatments. Pyrimethanil and tebuconazole plus chlorothalonil were the least effective treatments. None of the chemical treatments was phytotoxic or reduced yield.