4 resultados para Objective function values

em eResearch Archive - Queensland Department of Agriculture


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Davis Growth Model (a dynamic steer growth model encompassing 4 fat deposition models) is currently being used by the phenotypic prediction program of the Cooperative Research Centre (CRC) for Beef Genetic Technologies to predict P8 fat (mm) in beef cattle to assist beef producers meet market specifications. The concepts of cellular hyperplasia and hypertrophy are integral components of the Davis Growth Model. The net synthesis of total body fat (kg) is calculated from the net energy available after accounting tor energy needs for maintenance and protein synthesis. Total body fat (kg) is then partitioned into 4 fat depots (intermuscular, intramuscular, subcutaneous, and visceral). This paper reports on the parameter estimation and sensitivity analysis of the DNA (deoxyribonucleic acid) logistic growth equations and the fat deposition first-order differential equations in the Davis Growth Model using acslXtreme (Hunstville, AL, USA, Xcellon). The DNA and fat deposition parameter coefficients were found to be important determinants of model function; the DNA parameter coefficients with days on feed >100 days and the fat deposition parameter coefficients for all days on feed. The generalized NL2SOL optimization algorithm had the fastest processing time and the minimum number of objective function evaluations when estimating the 4 fat deposition parameter coefficients with 2 observed values (initial and final fat). The subcutaneous fat parameter coefficient did indicate a metabolic difference for frame sizes. The results look promising and the prototype Davis Growth Model has the potential to assist the beef industry meet market specifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few tools are available to assist graziers, land administrators and financiers in making objective grazing capacity decisions on Australian rangelands, despite existing knowledge regarding stocking rate theory and the impact of stocking rates on land condition. To address this issue a model for objectively estimating 'safe' grazing capacities on individual grazing properties in south-west Queensland was developed. The method is based on 'safe' levels of utilisation (15%-20%) by domestic livestock of average annual forage grown for each land system on a property. Average annual forage grown (kglha) was calculated as the product of the rainfall use efficiency (kglhdmm) and average annual rainfall (mm) for a land system. This estimate included the impact of tree and shrub cover on forage production. The 'safe' levels of forage utilisation for south- west Queensland pastures were derived from the combined experience of (1) re-analysis of the results of grazing trials, (2) reaching a consensus on local knowledge and (3) examination of existing grazing practice on 'benchmark' grazing properties. We recognise the problems in defining, determining and using grazing capacity values, but consider that the model offers decision makers a tool that can be used to assess the grazing capacity of individual properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective of this study was to investigate the impact of animal-level factors including energy balance and environmental/management stress, on the ovarian function of Bos indicus heifers treated to synchronize ovulation. Two-year-old Brahman (BN) (n = 30) and BN-cross (n = 34) heifers were randomly allocated to three intravaginal progesterone-releasing device (IPRD) treatment groups: (i) standard-dose IPRD [Cue-Mate (R) (CM) 1.56 g; n = 17]; (ii) half-dose IPRD [0.78 g progesterone (P4); CM 0.78 g; n = 15]; (iii) half-dose IPRD + 300 IU equine chorionic gonadotrophin at IPRD removal (CM 0.78 g + G; n = 14); (iv) and a control group, 2x PGF2a [500 mu g prostaglandin F2a (PGF2a)] on Day -16 and -2 (n = 18). Intravaginal progesterone-releasing device-treated heifers received 250 mu g PGF2a at IPRD insertion (Day -10) and IPRD removal (Day -2) and 1 mg oestradiol benzoate on Day -10 and -1. Heifers were managed in a small feedlot and fed a defined ration. Ovarian function was evaluated by ultrasonography and plasma P4 throughout the synchronized and return cycles. Energy balance was evaluated using plasma insulin-like growth factor 1 (IGF-I) and glucose concentrations. The impact of environmental stressors was evaluated using plasma cortisol concentration. Heifers that had normal ovarian function had significantly higher IGF-I concentrations at commencement of the experiment (p = 0.008) and significantly higher plasma glucose concentrations at Day -2 (p = 0.040) and Day 4 (p = 0.043), than heifers with abnormal ovarian function. There was no difference between the mean pre-ovulatory cortisol concentrations of heifers that ovulated or did not ovulate. However, heifers that ovulated had higher cortisol concentrations at Day 4 (p = 0.056) and 6 (p = 0.026) after ovulation than heifers that did not ovulate.