5 resultados para ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The appropriate frequency and precision for surveys of wildlife populations represent a trade-off between survey cost and the risk of making suboptimal management decisions because of poor survey data. The commercial harvest of kangaroos is primarily regulated through annual quotas set as proportions of absolute estimates of population size. Stochastic models were used to explore the effects of varying precision, survey frequency and harvest rate on the risk of quasiextinction for an arid-zone and a more mesic-zone kangaroo population. Quasiextinction probability increases in a sigmoidal fashion as survey frequency is reduced. The risk is greater in more arid regions and is highly sensitive to harvest rate. An appropriate management regime involves regular surveys in the major harvest areas where harvest rate can be set close to the maximum sustained yield. Outside these areas, survey frequency can be reduced in relatively mesic areas and reduced in arid regions when combined with lowered harvest rates. Relative to other factors, quasiextinction risk is only affected by survey precision (standard error/mean × 100) when it is >50%, partly reflecting the safety of the strategy of harvesting a proportion of a population estimate.
Resumo:
Genetic mark–recapture requires efficient methods of uniquely identifying individuals. 'Shadows' (individuals with the same genotype at the selected loci) become more likely with increasing sample size, and bias harvest rate estimates. Finding loci is costly, but better loci reduce analysis costs and improve power. Optimal microsatellite panels minimize shadows, but panel design is a complex optimization process. locuseater and shadowboxer permit power and cost analysis of this process and automate some aspects, by simulating the entire experiment from panel design to harvest rate estimation.
Resumo:
Mitochondrial DNA D-loop (control) region (426-bp) was used to infer the genetic structure of Spanish mackerel (Scomberomorus commerson) from populations in Southeast Asia (Brunei, East and West Malaysia, Philippines, Thailand, Singapore, and China) and northern Australia (including western Timor). An east–west division along Wallace’s Line was strongly supported by a significant AMOVA, with 43% of the total sequence variation partitioned among groups of populations. Phylogenetic and network analyses supported two clades: clade A and clade B. Members of clade A were found in Southeast Asia and northern Australia, but not in locations to the west (Gulf of Thailand) or north (China). Clade B was found exclusively in Southeast Asia. Genetic division along Wallace’s Line suggests that co-management of S. commerson populations for future sustainability may not be necessary between Southeast Asian nations and Australia, however all countries should share the task of management of the species in Southeast Asia equally. More detailed genetic studies of S. commerson populations in the region are warranted.
Resumo:
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every two years (2yrB), burning every four years (4yrB) and no burning (NB). C:N ratios in freshly fallen litter were 29-42% higher and C:P ratios were 6-25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N:P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N:P ratios were similar to the overall litter N:P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2yrB than NB while 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72±2% mass remaining at the end of experiment) than for 4yrB (59±3%) and NB (62±3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C:N:P stoichiometry and in microbial biomass N:P ratio and enzymatic activities. These data indicate that fire induced a transient shift to N-limited ecosystem conditions during the post-fire recovery phase. This article is protected by copyright. All rights reserved.