6 resultados para OPTICAL-MODEL ANALYSIS
em eResearch Archive - Queensland Department of Agriculture
Resumo:
There are two key types of selection in a plant breeding program, namely selection of hybrids for potential commercial use and the selection of parents for use in future breeding. Oakey et al. (in Theoretical and Applied Genetics 113, 809-819, 2006) showed how both of these aims could be achieved using pedigree information in a mixed model analysis in order to partition genetic effects into additive and non-additive effects. Their approach was developed for field trial data subject to spatial variation. In this paper we extend the approach for data from trials subject to interplot competition. We show how the approach may be used to obtain predictions of pure stand additive and non-additive effects. We develop the methodology in the context of a single field trial using an example from an Australian sorghum breeding program.
Resumo:
Short and variable vase life of cut Acacia holosericea foliage stems limits its commercial potential. Retrospective evaluation of factors affecting the vase life of this cut foliage line was assessed using primary data collected from 30 individual experiments. These data had been collected by four different researchers over 17 months, from late Summer to mid Winter across two consecutive years. Vase life data of cut A. holosericea stems held in deionised water (DIW) was analysed for general vase life variation and to define the most influential factor affecting vase life of the cut stems. Meanwhile, vase life of cut stems exposed to various chemical and physical postharvest treatments was analysed using meta-analysis to evaluate their efficacy in prolonging vase life of the stems. The overall mean vase life (±standard deviation) of cut A. holosericea stems was 6.4 ± 1.2 days (n = 30 trials). Longer vase life of ≥7 days was obtained from cut stems harvested at vegetative and flowering stage, which was between Summer and Autumn. Cut stems harvested at fruiting stage, between Winter and Spring displayed shorter vase life of ≤5.5 days. Mixed model analysis indicated that vase life variation of the cut stems was mostly determined by season (P < 0.001). In averaged, postharvest treatments increased vase life 1.4-fold compared to stems in DIW, with 68.32% had a large positive treatment effect size (d). Among the treatments, nano silver (NS) and copper (Cu2+) were the most beneficial to vase life. Retrospective analysis was found to be beneficial for identifying conditions and targeting practices to maximise the vase life of cut A. holosericea and, potentially for other species.
Resumo:
Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models. © 2014 Springer Science+Business Media New York.
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.