4 resultados para Non-target pest
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Sulfuryl fluoride (SF), an effective structural fumigant, is registered recently as Profume™ for controlling insect pests of stored grains and processed commodities. Information on its effectiveness in disinfestation of bulk grain, however, is limited. The ongoing problem with the strong level of resistance to phosphine has been addressed recently through deployment of SF as a ‘resistance breaker’ in bulk storages in Australia. This paper discusses important results on the efficacy of SF against key phosphine- resistant insect pests, lesser grain borer, Rhyzopertha dominca, red flour beetle, Tribolium castaneum, rice weevil, Sitophilus oryzae and the rusty grain beetle, Cryptolestes ferrugineus. We have established CT (g-hm3) profiles for SF against these insect pests at two temperature regimes 25 and 30°C, that showed that both temperature and exposure period (t) has significant influence on the effectiveness of SF than the concentration. Over a seven days fumigation period, CTs of 800 and 400 g-hm3 achieved complete control of all the target pests, including the most strongly phosphine - resistant species, C. ferrugineus at 25 and 30°C, respectively. Results from four industry scale field trials involving currently registered rate of SF (1500 g-hm3) over 2–14 d exposure period, confirmed its effectiveness in achieving complete control of the target pest species. The assessment of postfumigation grain samples across all the test storages indicated that the reinfestation occurs after three months. Monitoring resistance to phosphine in C. ferrugineus over a six year period (2009–2015), showed a significant reduction in resistant populations after the introduction of SF into the fumigation strategy at problematic storage sites. Overall our research concludes that SF is a good candidate to be used as a ‘resistance breaker’ where phosphine resistance is prevalent.
Resumo:
The status of five species of commercially exploited sharks within the Great Barrier Reef Marine Park (GBRMP) and south-east Queensland was assessed using a data-limited approach. Annual harvest rate, U, estimated empirically from tagging between 2011 and 2013, was compared with an analytically-derived proxy for optimal equilibrium harvest rate, UMSY Lim. Median estimates of U for three principal retained species, Australian blacktip shark, Carcharhinus tilstoni, spot-tail shark, Carcharhinus sorrah, and spinner shark, Carcharhinus brevipinna, were 0.10, 0.06 and 0.07 year-1, respectively. Median U for two retained, non-target species, pigeye shark, Carcharhinus amboinensis and Australian sharpnose shark, Rhizoprionodon taylori, were 0.27 and 0.01 year-1, respectively. For all species except the Australian blacktip the median ratio of U/UMSY Lim was <1. The high vulnerability of this species to fishing combined with life history characteristics meant UMSY Lim was low (0.04-0.07 year-1) and that U/UMSY Lim was likely to be > 1. Harvest of the Australian blacktip shark above UMSY could place this species at a greater risk of localised depletion in parts of the GBRMP. Results of the study indicated that much higher catches, and presumably higher U, during the early 2000s were likely unsustainable. The unexpectedly high level of U on the pigeye shark indicated that output-based management controls may not have been effective in reducing harvest levels on all species, particularly those caught incidentally by other fishing sectors including the recreational sector. © 2016 Elsevier B.V.
Resumo:
Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.
Resumo:
Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.