5 resultados para Non-linear map
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003-2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.
Resumo:
Remote drafting technology now available for sheep makes possible targeted supplementation of individuals within a grazing flock. This system was evaluated by using 68 Merino wethers grazing dry-season, native Mitchell grass pasture (predominantly Astrebla spp.) as a group and receiving access to lupin grain through a remote drafter 0, 1, 2, 4 or 7 days/week for 8 weeks. The sole paddock watering point was separately fenced and access was via a one-way flow gate. Sheep exited the watering point through a remote drafter operated by solar power and were drafted by radio frequency identification (RFID) tag, according to treatment, either back into the paddock or into a common supplement yard where lupins were provided ad libitum in a self-feeder. Sheep were drafted into the supplement yard on only their first time through the drafter during the prescribed 24-h period and exited the supplement yard via one-way flow gates in their own time. The remote drafter operated with a high accuracy, with only 2.1% incorrect drafts recorded during the experimental period out of a total of 7027 sheep passes through the remote drafter. The actual number of accesses to supplement for each treatment group, in order, were generally less than that intended, i.e. 0.02, 0.69, 1.98, 3.35 and 6.04 days/week. Deviations from the intended number of accesses to supplement were mainly due to sheep not coming through to water on their allocated day of treatment access, although some instances were due to incorrect drafts. There was a non-linear response in growth rate to increased frequency of access to lupins with the growth rate response plateauing at similar to 3 actual accesses per week, corresponding to a growth rate of 72.5 g/head. day. This experiment has demonstrated the application of the remote drafting supplementation system for the first time under grazing conditions and with the drafter operated completely from solar power. The experiment demonstrates a growth response to increasing frequency of access to supplement and provides a starting point with which to begin to develop feeding strategies to achieve sheep weight-change targets.
Resumo:
The Queensland strawberry (Fragaria ×ananassa) breeding program in subtropical Australia aims to improve sustainable profitability for the producer. Selection must account for the relative economic importance of each trait and the genetic architecture underlying these traits in the breeding population. Our study used estimates of the influence of a trait on production costs and profitability to develop a profitability index (PI) and an economic weight (i.e., change in PI for a unit change in level of trait) for each trait. The economic weights were then combined with the breeding values for 12 plant and fruit traits on over 3000 genotypes that were represented in either the current breeding population or as progenitors in the pedigree of these individuals. The resulting linear combination (i.e., sum of economic weight × breeding value for all 12 traits) estimated the overall economic worth of each genotype as H, the aggregate economic genotype. H values were validated by comparisons among commercial cultivars and were also compared with the estimated gross margins. When the H value of ‘Festival’ was set as zero, the H values of genotypes in the pedigree ranged from –0.36 to +0.28. H was highly correlated (R2 = 0.77) with the year of selection (1945–98). The gross margins were highly linearly related (R2 > 0.98) to H values when the genotype was planted on less than 50% of available area, but the relationship was non-linear [quadratic with a maximum (R2 > 0.96)] when the planted area exceeded 50%. Additionally, with H values above zero, the variation in gross margin increased with increasing H values as the percentage of area planted to a genotype increased. High correlations among some traits allowed the omission of any one of three of the 12 traits with little or no effect on ranking (Spearman’s rank correlation 0.98 or greater). Thus, these traits may be dropped from the aggregate economic genotype, leading to either cost reductions in the breeding program or increased selection intensities for the same resources. H was efficient in identifying economically superior genotypes for breeding and deployment, but because of the non-linear relationship with gross margin, calculation of a gross margin for genotypes with high H is also necessary when cultivars are deployed across more than 50% of the available area.
Resumo:
This paper presents a maximum likelihood method for estimating growth parameters for an aquatic species that incorporates growth covariates, and takes into consideration multiple tag-recapture data. Individual variability in asymptotic length, age-at-tagging, and measurement error are also considered in the model structure. Using distribution theory, the log-likelihood function is derived under a generalised framework for the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation, covariate effects can be included for both models with seasonality and tagging effects investigated. Method robustness is established via comparison with the Fabens, improved Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood method performing the best. The method is illustrated further with an application to blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that persisted for several months was detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.