15 resultados para Non-invasive monitoring

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) can play a vital role as a cost effective, rapid, non-invasive, reproducible diagnostic tool for many environmental management, agricultural and industrial waste water monitoring applications. In this paper we highlight the ability of NIRS technology to be used as a diagnostic tool in agricultural and environmental applications through the successful assessment of Fourier Transform NIRS to predict α santalol in sandalwood chip samples, and maturity of ‘Hass’ avocado fruit based on dry matter content. Presented at the Third International Conference on Challenges in Environmental Science & Engineering, CESE-2010. 26 September – 1 October 2010, The Sebel, Cairns, Queensland, Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of near infra-red (NIR) spectroscopy for non-invasive measurement of fruit quality of pineapple (Ananas comosus var. Smooth Cayenne) and mango (Magnifera indica var. Kensington) fruit was assessed. A remote reflectance fibre optic probe, placed in contact with the fruit skin surface in a light-proof box, was used to deliver monochromatic light to the fruit, and to collect NIR reflectance spectra (760–2500 nm). The probe illuminated and collected reflected radiation from an area of about 16 cm2. The NIR spectral attributes were correlated with pineapple juice Brix and with mango flesh dry matter (DM) measured from fruit flesh directly underlying the scanned area. The highest correlations for both fruit were found using the second derivative of the spectra (d2 log 1/R) and an additive calibration equation. Multiple linear regression (MLR) on pineapple fruit spectra (n = 85) gave a calibration equation using d2 log 1/R at wavelengths of 866, 760, 1232 and 832 nm with a multiple coefficient of determination (R2) of 0.75, and a standard error of calibration (SEC) of 1.21 °Brix. Modified partial least squares (MPLS) regression analysis yielded a calibration equation with R2 = 0.91, SEC = 0.69, and a standard error of cross validation (SECV) of 1.09 oBrix. For mango, MLR gave a calibration equation using d2 log 1/R at 904, 872, 1660 and 1516 nm with R2 = 0.90, and SEC = 0.85% DM and a bias of 0.39. Using MPLS analysis, a calibration equation with R2 = 0.98, SEC = 0.54 and SECV = 1.19 was obtained. We conclude that NIR technology offers the potential to assess fruit sweetness in intact whole pineapple and DM in mango fruit, respectively, to within 1° Brix and 1% DM, and could be used for the grading of fruit in fruit packing sheds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated whether plasticity in growth responses to nutrients could predict invasive potential in aquatic plants by measuring the effects of nutrients on growth of eight non-invasive native and six invasive exotic aquatic plant species. Nutrients were applied at two levels, approximating those found in urbanized and relatively undisturbed catchments, respectively. To identify systematic differences between invasive and non-invasive species, we compared the growth responses (total biomass, root:shoot allocation, and photosynthetic surface area) of native species with those of related invasive species after 13 weeks growth. The results were used to seek evidence of invasive potential among four recently naturalized species. There was evidence that invasive species tend to accumulate more biomass than native species (P = 0.0788). Root:shoot allocation did not differ between native and invasive plant species, nor was allocation affected by nutrient addition. However, the photosynthetic surface area of invasive species tended to increase with nutrients, whereas it did not among native species (P = 0.0658). Of the four recently naturalized species, Hydrocleys nymphoides showed the same nutrient-related plasticity in photosynthetic area displayed by known invasive species. Cyperus papyrus showed a strong reduction in photosynthetic area with increased nutrients. H. nymphoides and C. papyrus also accumulated more biomass than their native relatives. H. nymphoides possesses both of the traits we found to be associated with invasiveness, and should thus be regarded as likely to be invasive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. RESULTS: It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. CONCLUSION: The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent decreases in costs, and improvements in performance, of silicon array detectors open a range of potential applications of relevance to plant physiologists, associated with spectral analysis in the visible and short-wave near infra-red (far-red) spectrum. The performance characteristics of three commercially available ‘miniature’ spectrometers based on silicon array detectors operating in the 650–1050-nm spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, operated with a Larry detector) were compared with respect to the application of non-invasive prediction of sugar content of fruit using near infra-red spectroscopy (NIRS). The FICS–Larry gave the best wavelength resolution; however, the narrow slit and small pixel size of the charge-coupled device detector resulted in a very low sensitivity, and this instrumentation was not considered further. Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full width at half maximum of the 912 nm Hg peak, 13 and 2 nm for the MMS1 and S2000, respectively), but the large pixel height of the array used in the MMS1 gave it sensitivity comparable to the S2000. The signal-to-signal standard error ratio of spectra was greater by an order of magnitude with the MMS1, relative to the S2000, at both near saturation and low light levels. Calibrations were developed using reflectance spectra of filter paper soaked in range of concentrations (0–20% w/v) of sucrose, using a modified partial least squares procedure. Calibrations developed with the MMS1 were superior to those developed using the S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to noise ratio over wavelength resolution to calibration accuracy. The design of a bench top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar content of (intact) melon fruit is reported in terms of light source and angle between detector and light source, and optimisation of math treatment (derivative condition and smoothing function).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scrotal circumference (SC) is a simple, non-invasive measurement commonly used to evaluate bull breeding potential although its validity as a predictor of fertility is questionable (Holroyd, 1998). SC is highly heritable but varies with breed and animal factors such as condition, live weight and age. As an indicator of fertility, recommended SC values range broadly from 30cm to 38cm (Miller, 1992). It is assumed that SC accurately reflects testes mass (TM) which may be related to direct measures of fertility such as spermatogenesis (Entwistle, 1992). The SC measurements made here test the assumption that SC, used to estimate testes volume (TV), is directly related to TM. Miller (1992) reported a value of 261mm as the SC threshold for puberty. We have studied serial SC measurements so as to devise a more accurate means of using SC to determine puberty.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the fruit with 1 scan per spectrum, and modified partial least squares model development on a 720–950-nm window, pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical Rc2 of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%, respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM calibrations across new populations of fruit is documented in a companion study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sandalwood oil is widely used in the medicinal, cosmetic and aromatherapy industries. The oil is distilled from the heartwood of the sandalwood tree Santalum - a genus of hemi-parasitic tree species occurring throughout South and Southeast Asia, Australia and the Pacific. With international concern on the sustainability Sandalwood oil (Fox, 2000), the quality of oil entering the market is being compromised either through extraction from underdeveloped heartwoods or through adulteration with lower grade Sandalwood oils or synthetic substitutes (Howes et al. 2004). Although no standard method exists to assess the quality of Sandalwood oil, the International Organisation for Standardisation recommends GCMS analysis of santalol oil content. NIR spectroscopy has had a demonstrated success for other essential oils (Schulz et al. 2004, Steur et al. 2001). In addition, NIR spectroscopy has also been applied as both a qualitative and quantitative analytical tool in the forestry industry (Steur et al. 2001). This project aimed to assess the ability of NIR spectroscopy as a non-invasive, rapid and cheap analytical alternative to GCMS for Santalol determination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a need to have infertile male cattle in the Australian beef herd. There is, currently, no non-invasive alternative to the castration of cattle, nor is there likely to be one in the near future. There is ample scientific evidence demonstrating that castration causes stress and pain, and with the community increasingly scrutinising farming practices and seeking assurance that they are humane, there is a clear need to develop practical strategies for minimising the pain and stress associated with castration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A significantly increased water regime can lead to inundation of rivers, creeks and surrounding floodplains- and thus impact on the temporal dynamics of both the extant vegetation and the dormant, but viable soil-seed bank of riparian corridors. The study documented changes in the soil seed-bank along riparian corridors before and after a major flood event in January 2011 in southeast Queensland, Australia. The study site was a major river (the Mooleyember creek) near Roma, Central Queensland impacted by the extreme flood event and where baseline ecological data on riparian seed-bank populations have previously been collected in 2007, 2008 and 2009. After the major flood event, we collected further soil samples from the same locations in spring/summer (November–December 2011) and in early autumn (March 2012). Thereafter, the soils were exposed to adequate warmth and moisture under glasshouse conditions, and emerged seedlings identified taxonomically. Flooding increased seed-bank abundance but decreased its species richness and diversity. However, flood impact was less than that of yearly effect but greater than that of seasonal variation. Seeds of trees and shrubs were few in the soil, and were negatively affected by the flood; those of herbaceous and graminoids were numerous and proliferate after the flood. Seed-banks of weedy and/or exotic species were no more affected by the flood than those of native and/or non-invasive species. Overall, the studied riparian zone showed evidence of a quick recovery of its seed-bank over time, and can be considered to be resilient to an extreme flood event.