12 resultados para New Zealand - Race relations
em eResearch Archive - Queensland Department of Agriculture
Resumo:
AIMS: To examine pigs at slaughter in New Zealand for the presence of Pasteurella multocida, and to determine for isolates, their biochemical profi les, somatic and capsular types, and the presence or absence of the HSB and toxA genes, associated with haemorrhagic septicaemia (HS) and progressive atrophic rhinitis (PAR), respectively. METHODS: Swabs from 173 lungs, 158 palatine tonsils and 82 nasal passages of pigs at two abattoirs in New Zealand were cultured for P. multocida using conventional techniques, and isolated colonies were subjected to biochemical tests for identi- fi cation of biovars. Somatic serotyping was conducted using an agar gel immunodiffusion (AGID) test. Polymerase chain reaction (PCR) assays were used to confi rm phenotypic identifi cation of colonies using species-specifi c primers, capsule type using serogroup-specifi c primers and multiplex PCR, and to test for the presence of HSB and toxA genes. RESULTS: Pasteurella multocida was isolated from 11/173 (6.4%) lung, 32/158 (20.2%) palatine tonsil and 5/82 (6.1 %) nasal swab samples, a total of 48 isolates from 413 samples (11.6%). Isolation rates per farm ranged from 1–53% of tissue samples collected from pigs 5–6 months of age. On phenotypic characterisation, isolates were allocated to seven main biovars, viz 1, 2, 3, 5, 9, 12, and a dulcitol-negative variant of Biovar 8, the majority (30/48) being Biovar 3. Of the 42 isolates for which somatic serotyping was conducted, 10% were Serovar 1, 79% were Serovar 3, 2% were Serovar 6,1, 2% were Serovar 12, and 7% could not be typed. All 48 isolates were confi rmed as P. multocida using a species-specifi c PCR. In the capsular multiplex PCR, 92% of isolates were Capsular (Cap) type A, 2% were Cap D, and 6% could not be typed. None of the samples were positive for the HSB or toxA genes. CONCLUSION: Serovars or capsular types of P. multocida associated with HS or PAR in pigs were not detected. Establishment of species-specifi c, capsular and toxin PCR assays allowed the rapid screening of isolates of P. multocida, while serotyping provided an additional tool for epidemiological and tracing purposes.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
AIM: To genotype bovine herpesvirus type 1 (BHV-1) isolates from cattle in New Zealand. METHODS: Twenty-eight BHV-1 isolates were collected from clinical samples from cattle over 28 years. They were characterised and compared using restriction endonuclease analysis (REA), and polymerase chain reaction (PCR) and DNA sequencing. RESULTS: Twenty-four isolates were classified as bovine herpesvirus subtype 1.2b (BHV-1.2b) by REA. The remaining four isolates were distinct from the others in REA profiles of one of the major enzymes (HindIII) by which the classification was made. However, these four isolates were closely related to others when the REA profiles of other restriction enzymes were studied, and therefore were regarded as divergent strains of BHV-1.2b. All BHV-1 isolates were detectable by PCR, and sequence analysis of selected PCR products did not indicate any significant differences between isolates. CONCLUSION: BHV-1.2b appears to be the predominant strain of BHV-1 in cattle in New Zealand. There was no evidence that more virulent strains of BHV-1, e.g. subtype 1.1 and BHV type 5, are, or have been, present in New Zealand. Genetic variations exist among these BHV-1.2b isolates.
Resumo:
A new genus (Kaurimyia thorpei gen. et sp. nov.) of the enigmatic fly family Apsilocephalidae (Asiloidea) is described from New Zealand. Kaurimyia thorpei gen. et sp. nov. is described and figured from male and female specimens, one of which was collected in Kauri forest near Auckland (North Island). While superficially similar to Apsilocephala Krober, this new genus shows closer affinities to Clesthentia White (=Clesthentiella Nagatomi, Saigusa, Nagatomi et Lyneborg syn. nov.) from Tasmania based on genitalic characters such as aedeagus shape and non-articulated surstyli. Apsilocephalidae is presently known from just a few extant species in North America and Tasmania (Australia), although extinct species are recorded from the Holarctic and Oriental regions. This is the first description of the family from New Zealand.
Resumo:
DairyMod, EcoMod, and the SGS Pasture Model are mechanistic biophysical models developed to explore scenarios in grazing systems. The aim of this manuscript was to test the ability of the models to simulate net herbage accumulation rates of ryegrass-based pastures across a range of environments and pasture management systems in Australia and New Zealand. Measured monthly net herbage accumulation rate and accumulated yield data were collated from ten grazing system experiments at eight sites ranging from cool temperate to subtropical environments. The local climate, soil, pasture species, and management (N fertiliser, irrigation, and grazing or cutting pattern) were described in the model for each site, and net herbage accumulation rates modelled. The model adequately simulated the monthly net herbage accumulation rates across the range of environments, based on the summary statistics and observed patterns of seasonal growth, particularly when the variability in measured herbage accumulation rates was taken into account. Agreement between modelled and observed growth rates was more accurate and precise in temperate than in subtropical environments, and in winter and summer than in autumn and spring. Similarly, agreement between predicted and observed accumulated yields was more accurate than monthly net herbage accumulation. Different temperature parameters were used to describe the growth of perennial ryegrass cultivars and annual ryegrass; these differences were in line with observed growth patterns and breeding objectives. Results are discussed in the context of the difficulties in measuring pasture growth rates and model limitations.
Resumo:
This paper describes the establishment of provenance seedling seed orchards of three spotted gums and cadaga (all species of Corymbia ex Eucalyptus). It also discusses the limitations of growing the spotted gums as pure species including: lack of mass flowering, susceptibility to a fungal shoot blight and low amenability to vegetative propagation. These limitations, together with observation of putative natural hybrids of the spotted gums with cadaga, and the early promise of manipulated hybrids, led to an intensive breeding and testing program. Many hybrid families have significant advantages in growth and tolerance to disease, insects and frost, and can be vegetatively propagated. They also exhibit broad environmental plasticity, allowing the best varieties to be planted across a wider range of sites than the spotted gums, resulting in more land being suitable for plantation development.
Resumo:
The recent 8th Australasian plant virology workshop in Rotorua, New Zealand, discussed the development of a New Zealand database of plant virus and virus-like organisms. Key points of discussion included: (i) the purpose of such a database; (ii) who would benefit from the information in a database; (iii) the scope of a database and its associated collections; (iv) database information and format; and (v) potential funding of such a database. From the workshop and further research, we conclude that the preservation and verification of specimens within the collections and the development of a New Zealand database of plant virus and virus-like organisms is essential. Such a collection will help to fulfil statutory requirements in New Zealand and assist in fulfilling international obligations under the International Plant Protection Convention. Sustaining such a database will assist New Zealand virologists and statutory bodies to undertake scientifically sound research. Establishing reliable records and an interactive database will help to ensure accurate and timely diagnoses of diseases caused by plant viruses and virus-like organisms. Detection of new incursions and their diagnosis will be further enhanced by the use of such reference collections and their associated database. Connecting and associating this information to similar overseas databases would assist international collaborations and allow access to the latest taxonomic and diagnostic resources. Associated scientists working in the areas of plant breeding, export phytosanitary assurance and in the area of the conservation estate would also benefit from access to verified specimens of plant viruses and virus-like organisms. We conclude that funding of a New Zealand database of virus and virus-like organisms and its associated collections should be based partly on Crown funds, as it is a nationally significant biological resource.
Resumo:
Lantana camara is an environmental weed in the northern North Island of New Zealand. It is an increasingly observed problem in forest margins, coastal scrublands, dunes, plantations and island habitats, and its rapid, uncontrolled growth can create dense impenetrable thickets, suppressing vegetation and bush regeneration. Biological control options are being considered for its management. A strain of the Brazilian rust Prospodium tuberculatum was released against lantana in Australia in 2001. This rust was screened against invasive forms of the weed that occur in New Zealand and was found to be pathogenic under glasshouse conditions. A survey found no evidence that the rust occurs in New Zealand. It is concluded that P. tuberculatum is potentially a suitable agent for the biocontrol of lantana in New Zealand and further research should be carried out prior to importation of the organism.
Resumo:
Five new species of Sophiothrips are described from mainland Australia, of which one is widespread in the eastern part of the continent, with a second widespread across the northern tropical zone. These species appear to be members of the breviceps species-group from the Old World tropics. One of these five is particularly unusual within the genus in that the maxillary stylets are retracted into the head anterior to the postoccipital ridge. A sixth new species is described from Australia that is known only from Norfolk Island, but this is closely related to two species that are endemic to New Zealand. A key is provided to the nine species recognised.
Resumo:
New Zealand's Greenhouse Gas Inventory (the NZ Inventory) currently estimates methane (CH4) emissions from anaerobic dairy effluent ponds by: (1) determining the total pond volume across New Zealand; (2) dividing this volume by depth to obtain the total pond surface area; and (3) multiplying this area by an observational average CH4 flux. Unfortunately, a mathematically erroneous determination of pond volume has led to an imbalanced equation and a geometry error was made when scaling-up the observational CH4 flux. Furthermore, even if these errors are corrected, the nationwide estimate still hinges on field data from a study that used a debatable method to measure pond CH4 emissions at a single site, as well as a potentially inaccurate estimation of the amount of organic waste anaerobically treated. The development of a new methodology is therefore critically needed.
Resumo:
Turnip mosaic virus (TuMV) is a potyvirus that is transmitted by aphids and infects a wide range of plant species. We investigated the evolution of this pathogen by collecting 32 isolates of TuMV, mostly from Brassicaceae plants, in Australia and New Zealand. We performed a variety of sequence-based phylogenetic and population genetic analyses of the complete genomic sequences and of three non-recombinogenic regions of those sequences. The substitution rates, divergence times and phylogeographical patterns of the virus populations were estimated. Six inter- and seven intralineage recombination-type patterns were found in the genomes of the Australian and New Zealand isolates, and all were novel. Only one recombination-type pattern has been found in both countries. The Australian and New Zealand populations were genetically different, and were different from the European and Asian populations. Our Bayesian coalescent analyses, based on a combination of novel and published sequence data from three nonrecombinogenic protein-encoding regions, showed that TuMV probably started to migrate from Europe to Australia and New Zealand more than 80 years ago, and that distinct populations arose as a result of evolutionary drivers such as recombination. The basal-B2 subpopulation in Australia and New Zealand seems to be older than those of the world-B2 and -B3 populations. To our knowledge, our study presents the first population genetic analysis of TuMV in Australia and New Zealand. We have shown that the time of migration of TuMV correlates well with the establishment of agriculture and migration of Europeans to these countries.
Resumo:
Species of Lissothrips and Williamsiella live in association with mosses and lichens. Their gut contents are commonly blue-green, suggesting that they possibly feed on blue-green algae. Three species of Lissothrips are known from New Zealand, of which two are here recorded from Australia together with six new species. Williamsiella is recorded from Australia for the first time, with one new species.