2 resultados para National Homelessness Research Agenda

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The status of biocontrol of Chromolaena odorata, a weed of significant agricultural importance in Papua New Guinea, is assessed. Chromolaena is confirmed present in 391 sites in 12 of the 20 provinces of PNG. A collaborative project on the biocontrol of chromolaena involving the PNG National Agricultural Research Institute and the Queensland Department of Primary Industries and Fisheries began in1998, with funding from ACIAR. Three agents, the moth Pareuchaetes pseudoinsulata, which has established only in Morobe Province, the stem-galling fly Cecidochares connexa, which has established in all 12 provinces and the leaf mining fly Calycomyza eupatorivora, which is currently being monitored for establishment, have been introduced. Cecidochares connexa has been the most effective of the agents so far and it has spread more than 100 km in five years from some release sites. Preliminary field data have shown that the numbers of galls per plant have increased, coupled with a decrease in plant height and percent plant cover. In parts of New Ireland and Sandaun provinces, C. connexa has controlled chromolaena, resulting in the regeneration of natural vegetation. In addition, some food gardens have been re-established where chromolaena had once taken over. Consequently, food production has increased and income generated from selling agricultural produce has increased two fold. There is also less time spent in clearing chromolaena from food gardens and plantations. The effectiveness of C. connexa has brought relief to many communities, which are helping in the distribution of the gall fly to other areas affected by chromolaena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.