12 resultados para NACL INTAKE
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The influence of barley and oat grain supplements on hay dry matter intake (DMI), carcass components gain and meat quality in lambs fed a low quality basal diet was examined. Thirty five crossbred wether lambs (9 months of age) were divided into four groups. After adaptation to a basal diet of 85% oat hay and 15% lucerne hay for one week, an initial group of 11 was slaughtered. The weights of carcass components and digesta-free empty body weight (EBW) of this group was used to estimate the weight of carcass components of the other three experimental groups at the start of the experiment. The remaining three groups were randomly assigned to pens and fed ad libitum the basal diet alone (basal), basal with 300 g air dry barley grain (barley), basal with 300 g air dry oat grain (oat). Supplements were fed twice weekly (i.e., 900 g on Tuesday and 1200 g on Friday). After 13 weeks of feeding, animals were slaughtered and, at 24 h post-mortem meat quality and subcutaneous fat colour were measured. Samples of longissimus muscle were collected for determination of sarcomere length and meat tenderness. Hay DMI was reduced (P<0.01) by both barley and oat supplements. Lambs fed barley or oat had a higher and moderate digestibility of DM, and a higher intake of CP (P<0.05) and ME (P<0.01) than basal lambs. Final live weight of barley and oat lambs was higher (P<0.05) than basal, but this was not reflected in EBW or hot carcass weight. Lambs fed barley or oat had increases in protein (P<0.01) and water (P<0.001) in the carcass, but fat gain was not changed (P>0.05). There were no differences in eye muscle area or fat depth (total muscle and adipose tissue depth at 12th rib, 110 mm from midline; GR) among groups. The increased levels of protein and water components in the carcass of barley and oat fed lambs, associated with improved muscle production, were small and did not alter (P>0.05) any of the carcass/meat quality attributes compared to lambs fed a low quality forage diet. Feeding barley or oat grain at 0.9–1% of live weight daily to lambs consuming poor quality hay may not substantially improve carcass quality, but may be useful in maintaining body condition of lambs through the dry season for slaughter out of season
Resumo:
Supplements are often fed to ruminants in extensive grazing situations to provide minerals and nitrogen likely to be deficient in pasture. However a large proportion of animals offered such supplements may not consume any supplement, while among consumer animals the variability in supplement intake may be high (Wheeler et al., 1980; Dixon et al., 1998). An experiment examined the distribution of intake of a molasses-based supplement containing phosphorus and urea in a breeder herd. A herd of mixed-age breeder cows, calves, heifers and bulls were offered ad libitum a molasses-based supplement containing 13% urea and 17% phosphoric acid. After 2 weeks lithium-labelled supplement (2 mg Li/kg LW) was offered on one day to measure individual intakes of supplement. The molasses was offered in three 560 mm diameter feeders placed together near the water point.
Resumo:
Loose mineral mix (LMM) supplements are often fed to ruminants in extensive grazing situations to provide minerals and nitrogen likely to be deficient in pasture. However a large proportion of animals offered such supplements may not consume any supplement, while among consumer animals the variability in supplement intake may be high (Wheeler et al., 1980; Dixon et al., 1996). Two experiments examined the distribution of intake of LMM supplements offered to heifers grazing in mob and paddock sizes representative of commercial cattle properties.
Resumo:
The cuticular waxes of forage plants contain long chain n-alkanes with odd carbon chain lengths in the range C25-C37 which are quantitatively recovered in faeces. When these concentrations are used with the concentrations of administered synthetic even chain length alkanes, the voluntary intake (VI), faecal output (FO) and digestibility (DMD) of forages can be estimated (Dove and Mayes 1991, 1996).
Resumo:
Molasses-based liquid supplements fed ad libitum are widely used to provide additional metabolisable energy, non-protein N (NPN) and other nutrients to grazing cattle, but it is often difficult to achieve target intakes of supplementary nutrients. Experiments examined the effects of increasing concentrations of phosphoric acid, urea and ammonium sulfate on the voluntary intake (VI) of molasses-based supplements offered ad libitum to heifers grazing tropical pastures. In Experiment 1, the VI of a supplement containing 78 g urea/kg and 26 g phosphoric acid/kg as-fed (M80U+PA) was 3.61 g DM/kg liveweight (LW) per day, and provided 181 mg NPN and 32.4 mg phosphorus (P)/kg LW per day. Increasing the urea content of the supplement to 137 g/kg (M140U+PA) or 195 g/kg (M200U+PA) reduced VI of supplement DM, NPN and P by up to 76%, 44% and 80%, respectively. VI of supplement containing ammonium sulfate (M140+AS+PA) was lower (P < 0.05) than that of M140U+PA supplement, and tended (P > 0.05) to be lower than that of M200U+PA supplement. In experiment 2, the VI by heifers of a supplement containing 200 g urea/kg (M200U) was 1.53 g supplement DM/kg LW per day, which provided 186 mg NPN/kg LW per day. Inclusion of 49 g phosphoric acid/kg as-fed in this supplement (M190U+50PA) reduced (P < 0.05) VI of supplement DM and NPN by 33% and 36%, respectively, while inclusion of 97 g phosphoric acid/kg (M180U+100PA) reduced (P < 0.05) VI of supplement DM and NPN by 43% and 48%, respectively. The M190U+50PA and M180U+100PA supplements provided 16 and 26 mg P/kg LW per day, respectively. Heifers not fed supplements gained 0.07 kg/day, and the M200U supplement increased (P < 0.05) LW gain to 0.18 kg/day. LW gain was further increased (P < 0.05) by the M190U+50PA to 0.28 kg/day, indicating a growth response to supplementary P. No adverse effects of the supplements on animal health were observed in any of the experiments. In conclusion, addition of urea and/or phosphoric acid to molasses supplements effectively reduced VI of supplementary DM, NPN and P, and in the circumstances of Experiment 2, both molasses-urea and P supplements increased heifer LW.
Resumo:
Three experiments were conducted to determine liveweight (W) gain and feed and water intake of weaned Bali cattle offered a range of feed types. In each experiment, 18 weaned entire male Bali cattle were allocated to three treatment groups in a completely randomised block design, with six replicates (animals) per treatment. The dietary treatments were: Experiment 1, native grass fed ad libitum, native grass supplemented with rice bran at 10 g dry matter (DM)/kg W.day and native grass supplemented with a mixture of rice bran and copra meal in equal proportions fed at 10 g DM/kg W.day; Experiment 2, elephant grass hay fed ad libitum, elephant grass supplemented with gliricidia at 10 g DM/kg W.day, and gliricidia fed ad libitum; and Experiment 3, corn stover fed ad libitum, corn stover supplemented with gliricidia at 10 g DM/kg W.day, and corn stover supplemented with rice bran/copra meal in equal amounts (w/w) at 10 g DM/kg W.day. Each experiment was 10 weeks in duration, consisting of a 2-week preliminary period for adaptation to diets and an 8-week experimental period for the measurement of W change, feed and water intake and digestibility of the diet. Growth rates of 6-12-month-old, entire male Bali cattle fed a range of local diets ranged from 0.10 and 0.40 kg/day. Lowest growth rates occurred when the cattle were given the basal diets of native grass (0.104 kg/day), elephant grass (0.174 kg/day) and corn stover (0.232 kg/day). With the addition of supplements such as rice bran, rice bran/copra meal or gliricidia to these basal diets liveweight gains increased to between 0.225 and 0.402 kg/day. Forage DM intake was reduced with these supplements by on average 22.6% while total DM intake was increased by an average of 10.5%. The growth rate on gliricidia alone was 0.269 kg/day and feed DM intake was 28.0 g/kg W.day. Water intake was not affected by supplement type or intake. In conclusion, inclusion of small quantities of locally available, high quality feed supplements provide small-holder farmers with the potential to increase growth rates of Bali calves from 0.1 to 0.2 kg/day, under prevailing feeding scenarios, to over 0.4 kg/day.
Resumo:
The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 × 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ~50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.
Resumo:
The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 x 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ∼50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.
Resumo:
Cattle consuming pastures low in protein have low liveweight gain due to low rumen degradable protein (RDP) supply and thus low microbial crude protein (MCP) production and efficiency of MCP production [EMCP, g MCP/kg digestible organic matter (DOM)]. Nitrogen supplements can increase MCP production and EMCP of cattle grazing low protein pastures. The objective of this study was to compare the effects of supplementation with a non-protein-N source (NPN), in this case urea and ammonium sulfate (US), with a single-cell algal protein source (Spirulina platensis), on intake, microbial protein supply and digestibility in cattle. Nine cannulated Bos indicus steers [initial liveweight 250.1 ± 10.86 (s.d.) kg] were fed Mitchell grass hay (Astrebla spp; 6.1 g N, 746 g NDF/kg DM) ad libitum and were supplied with increasing amounts of US (0, 6, 13, 19 and 33 g US DM/kg hay DM) or Spirulina 0, 0.5, 1.4, 2.5 and 6.1 g Spirulina DM/kg W.day in an incomplete Latin square design. The response of MCP production and EMCP to increasing amounts of the two supplements was different, with a greater response to Spirulina evident. The MCP production was predicted to peak at 140 and 568 g MCP/day (0.64 and 2.02 g MCP/kg W.day) for the US and Spirulina supplements, respectively. The highest measured EMCP were 92 and 166 g MCP/kg DOM for the US and Spirulina treatments at 170 and 290 g RDP/kg DOM, respectively, or a Spirulina intake of 5.7 g DM/kg W.day. Increasing RDP intake from US and Spirulina resulted in an increase in Mitchell grass hay intake and rumen NH3-N concentration and reduced the retention time of liquid and particulate markers and digesta DM, NDF and lignin in the rumen with greater changes due to Spirulina. Total DM intake peaked at a Spirulina supplement level of 4.6 g Spirulina DM/kg W.day with a 2.3-fold higher DOM intake than Control steers. Rumen NH3-N concentrations reached 128 and 264 mg NH3-N/L for the US and Spirulina treatments with a significant increase in the concentration of branched-chain fatty acids for the Spirulina treatment. The minimum retention time of liquid (Cr-EDTA; 23 and 13 h) and particulate (Yb; 34 and 22 h) markers in the rumen were significantly lower for Spirulina compared with US and lower than unsupplemented animals at 24 and 34 h for Cr-EDTA and Yb, respectively. Spirulina could be provided safely at much higher N intakes than NPN supplements. The results suggest that, at an equivalent RDP supply, Spirulina provided greater increases than US in MCP production, EMCP and feed intake of Bos indicus cattle consuming low protein forage and could also be fed safely at higher levels of N intake.
Resumo:
The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.
Resumo:
Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3- to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that spot measurements could be made in association with feed efficiency tests made over 70 days. Spot measurements of enteric emissions can be used to define DMP but the number of animals and samples are larger than are needed when day-long measures are made.