9 resultados para Mycoplasma ovis
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The immunogenicity of P97 adhesin repeat region R1 (P97R1) of Mycoplasma hyopneumoniae, an important pathogenesis-associated region of P97, was evaluated in mice as a mucosal vaccine. Mice were immunized orally with attenuated Salmonella typhimurium aroA strain CS332 harbouring a eukaryotic or prokaryotic expression vector encoding IP97R1. Local and systemic immune responses were analysed by ELISA on mouse sera, lung washes and splenocyte supernatants following splenocyte stimulation with specific antigens in vitro. Although no P97R1-specific antibody responses were detected in serum and lung washes, significant gamma interferon was produced by P97R1-stimulated splenocytes from mice immunized orally with S. typhimurium aroA harbouring either expression system, indicating induction of a cell-mediated immune response. These results suggested that live bacterial vectors carrying DNA vaccines or expressing heterologous antigens preferentially induce a Th1 response. Surprisingly, however, mice immunized with the vaccine carrier S. typhimurium aroA CS332 induced serum IgG, but not mucosal IgA, against P97R1 or S. typhimurium aroA CS332 whole-cell lysate, emphasizing the importance of assessing the suitability of attenuated S. typhimurium antigen-carrier delivery vectors in the mouse model prior to their evaluation as potential vaccines in the target species, which in this instance was pigs.
Resumo:
Control of sheep lice with conventional pesticides can be compromised by difficulty in contacting lice in the dense water repellent fleeces of sheep, particularly when sheep have not been recently shorn. Entomopathogenic nematodes (ENs) are motile and are able to actively seek out insect hosts. They have particular advantages for the control of pests in cryptic habitats, such as the fleeces of sheep and avoid many of the problems frequently associated with chemical controls. This study investigated whether ENs were able infect and kill Bovicola ovis and compared the effectiveness of different species at different temperatures and when applied to wool. Four species of nematodes, Steinernema carpocapsae, Steinernema riobrave, Steinernema feltiae and Heterorhabditis bacteriophora were tested. All were shown to infect and kill lice in Petri dish assays at 30C. At 35C, the percent infection for S. carpocapsae and S. riobrave was significantly higher than for the other two species and percent infection by S. feltiae was significantly greater than for H. bacteriophora (P<0.05). At 37C the percent mortality induced by S. riobrave was significantly greater than for S. carpocapsae (P<0.05). All species were able to locate and infect lice in wool when formulated in water with 8% Tween 80. In wool assays the percent lice infected with nematodes was significantly greater for S. riobrave than H.bacteriophora at 25C, but there were no other differences between species (P=0.05). S. carpocapsae, S. riobrave and S. feltiae caused significantly higher lice mortality than H. bacteriophora at both 25 and 35C in wool assays, but mortality induced by the three steinernematid species did not differ significantly (P>0.05). It is concluded that of the ENs studied S. riobrave is likely to be most effective against B. ovis when applied to live sheep because of its greater tolerance to high temperatures and 'cruiser' foraging strategy .
Resumo:
Tea tree oil (TTO) from the Australian native plant Melaleuca alternifolia has wide ranging bio-active properties, including insecticidal and repellent activity against arthropods. Furthermore, composition of commercially available Australian TTO is specified under an International Organization for Standardization standard (ISO 4730), reducing the potential for variable effects often noted with botanical pesticides. The effect of TTO, meeting the ISO standard for terpinen-4-ol chemotype, was tested against sheep lice (Bovicola ovis Schrank) in a series of laboratory studies. Immersion of wool for 60s in formulations containing concentrations of 1% TTO and above caused 100% mortality of adult lice and eggs. Exposure to vapours from TTO, delivered as droplets in fumigation chambers and when applied to wool also caused high mortality in both lice and eggs. The main active component of TTO in the fumigant tests was terpinen-4-ol. Treated surface assays and tests with wool where the formulation was allowed to dry before exposure of lice indicated low persistence. These studies demonstrate that TTO is highly toxic to sheep lice and active at concentrations that suggest potential for the development of TTO-based ovine lousicides. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Bovine respiratory disease complex (BRDC) is a multi-factorial disease in which numerous factors, such as animal management, pathogen exposure and environmental conditions, contribute to the development of acute respiratory illness in feedlot cattle. The role of specific pathogens in the development of BRDC has been difficult to define because of the complex nature of the disease and the presence of implicated bacterial pathogens in the upper respiratory tract of healthy animals. Mycoplasma bovis is an important pathogen of cattle and recognised as a major contributor to cases of mastitis, caseonecrotic bronchopneumonia, arthritis and otitis media. To date, the role of M.bovis in the development of BRDC of Australian feeder cattle has not been investigated. Methods: In this review, the current literature pertaining to the role of M.bovis in BRDC is evaluated. In addition, preliminary data are presented that identify M.bovis as a potential contributor to BRDC in Australian feedlots, which has not been considered previously. Results and Conclusion: The preliminary results demonstrate detection of M.bovis in samples from all feedlots studied. When considered in the context of the reviewed literature, they support the inclusion of M.bovis on the list of pathogens to be considered during investigations into BRDC in Australia. © 2014 Australian Veterinary Association.
Resumo:
The Mycoplasma hyopneumoniae ribonucleotide reductase R2 subunit (NrdF) gene fragment was cloned into eukaryotic and prokaryotic expression vectors and its immunogenicity evaluated in mice immunized orally with attenuated Salmonella typhimurium aroA CS332 harboring either of the recombinant expression plasmids. We found that NrdF is highly conserved among M. hyopneumoniae strains. The immunogenicity of NrdF was examined by analyzing antibody responses in sera and lung washes, and the cell-mediated immune (CMI) response was assessed by determining the INF-[gamma] level produced by splenocytes upon in vitro stimulation with NrdF antigen. S. typhimurium expressing NrdF encoded by the prokaryotic expression plasmid (pTrcNrdF) failed to elicit an NrdF-specific serum or secretory antibody response, and IFN-[gamma] was not produced. Similarly, S. typhimurium carrying the eukaryotic recombinant plasmid encoding NrdF (pcNrdF) did not induce a serum or secretory antibody response, but did elicit significant NrdF-specific IFN-[gamma] production, indicating induction of a CMI response. However, analysis of immune responses against the live vector S. typhimurium aroA CS332 showed a serum IgG response but no mucosal IgA response in spite of its efficient invasiveness in vitro. In the present study we show that the DNA vaccine encoding the M. hyopneumoniae antigen delivered orally via a live attenuated S. typhimurium aroA can induce a cell-mediated immune response. We also indicate that different live bacterial vaccine carriers may have an influence on the type of the immune response induced.
Resumo:
Low-volume, backline applications with the benzoylphenyl urea insecticides triflumuron and diflubenzuron represent in excess of 70% of treatments for the control of sheep lice, Bovicola ovis (Schrank) (Phthiraptera: Trichodectidae), in Australia. Reports of reduced effectiveness from 2003 and subsequent controlled treatment trials suggested the emergence of resistance to these compounds in B. ovis populations. A laboratory assay based on the measurement of moulting success in nymphs was developed and used to assess susceptibility to diflubenzuron and triflumuron in louse populations collected from sheep where a control failure had occurred. These tests confirmed the development of resistance to triflumuron and diflubenzuron in at least two instances, with estimated resistance ratios of 67-94X at LC50.
Resumo:
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.