11 resultados para Multi-Equation Income Model

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spatially explicit multi-competitor coexistence model was developed for meta-populations of prawns (shrimp) occupying habitat patches across the Great Barrier Reef, where dispersal was localised and dispersal rates varied between species. Prawns were modelled as individuals moving to and from patches or cells according to pre-set decision rules. The landscape was simulated as a matrix of cells with each cell having a spatially explicit survival index for each species. Mixed species prawn assemblages moved over this simplified spatially explicit landscape. A low level of chronic random environmental disturbance was assumed (cyclone and tropical storm damage) with additional acute spatially confined disturbance due to commercial trawling, modelled as an increase in mortality affecting inter-specific competition. The general form of the results was for increased disturbance to favour good-colonising "generalist" species at the expense of good-competitor "specialists". Increasing fishing mortality (local patch extinctions) combined with poor colonising ability resulted in low equilibrium abundance for even the best competitor, while in the same circumstances the poorest competitor but best coloniser could have the highest equilibrium abundance. This mimics the switch from high-value prawn species to lower-value prawn species as trawl effort increases, reflected in historic catch and effort logbook data and reported anecdotaly from the north Queensland trawl fleet. To match the observed distribution and behaviour of prawn assemblages, a combination inter-species competition, a spatially explicit landscape, and a defined pattern of disturbance (trawling) was required. Modelling this combination could simulate not only general trends in spatial distribution of each of prawn species but also localised concentrations observed in the survey data

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a participatory modelling framework that integrates information from interviews and discussions with farmers and consultants, with dynamic bio-economic models to answer complex questions on the allocation of limited resources at the farm business level. Interviews and discussions with farmers were used to: describe the farm business; identify relevant research questions; identify potential solutions; and discuss and learn from the whole-farm simulations. The simulations are done using a whole-farm, multi-field configuration of APSIM (APSFarm). APSFarm results were validated against farmers' experience. Once the model was accepted by the participating farmers as a fair representation of their farm business, the model was used to explore changes in the tactical or strategic management of the farm and results were then discussed to identify feasible options for improvement. Here we describe the modelling framework and present an example of the application of integrative whole farm system tools to answer relevant questions from an irrigated farm business case study near Dalby (151.27E - 27.17S), Queensland, Australia. Results indicated that even though cotton crops generates more farm income per hectare a more diversified rotation with less cotton would be relatively more profitable, with no increase in risk, as a more cotton dominated traditional rotation. Results are discussed in terms of the benefits and constraints from developing and applying more integrative approaches to represent farm businesses and their management in participatory research projects with the aim of designing more profitable and sustainable irrigated farming systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared daily net radiation (Rn) estimates from 19 methods with the ASCE-EWRI Rn estimates in two climates: Clay Center, Nebraska (sub-humid) and Davis, California (semi-arid) for the calendar year. The performances of all 20 methods, including the ASCE-EWRI Rn method, were then evaluated against Rn data measured over a non-stressed maize canopy during two growing seasons in 2005 and 2006 at Clay Center. Methods differ in terms of inputs, structure, and equation intricacy. Most methods differ in estimating the cloudiness factor, emissivity (e), and calculating net longwave radiation (Rnl). All methods use albedo (a) of 0.23 for a reference grass/alfalfa surface. When comparing the performance of all 20 Rn methods with measured Rn, we hypothesized that the a values for grass/alfalfa and non-stressed maize canopy were similar enough to only cause minor differences in Rn and grass- and alfalfa-reference evapotranspiration (ETo and ETr) estimates. The measured seasonal average a for the maize canopy was 0.19 in both years. Using a = 0.19 instead of a = 0.23 resulted in 6% overestimation of Rn. Using a = 0.19 instead of a = 0.23 for ETo and ETr estimations, the 6% difference in Rn translated to only 4% and 3% differences in ETo and ETr, respectively, supporting the validity of our hypothesis. Most methods had good correlations with the ASCE-EWRI Rn (r2 > 0.95). The root mean square difference (RMSD) was less than 2 MJ m-2 d-1 between 12 methods and the ASCE-EWRI Rn at Clay Center and between 14 methods and the ASCE-EWRI Rn at Davis. The performance of some methods showed variations between the two climates. In general, r2 values were higher for the semi-arid climate than for the sub-humid climate. Methods that use dynamic e as a function of mean air temperature performed better in both climates than those that calculate e using actual vapor pressure. The ASCE-EWRI-estimated Rn values had one of the best agreements with the measured Rn (r2 = 0.93, RMSD = 1.44 MJ m-2 d-1), and estimates were within 7% of the measured Rn. The Rn estimates from six methods, including the ASCE-EWRI, were not significantly different from measured Rn. Most methods underestimated measured Rn by 6% to 23%. Some of the differences between measured and estimated Rn were attributed to the poor estimation of Rnl. We conducted sensitivity analyses to evaluate the effect of Rnl on Rn, ETo, and ETr. The Rnl effect on Rn was linear and strong, but its effect on ETo and ETr was subsidiary. Results suggest that the Rn data measured over green vegetation (e.g., irrigated maize canopy) can be an alternative Rn data source for ET estimations when measured Rn data over the reference surface are not available. In the absence of measured Rn, another alternative would be using one of the Rn models that we analyzed when all the input variables are not available to solve the ASCE-EWRI Rn equation. Our results can be used to provide practical information on which method to select based on data availability for reliable estimates of daily Rn in climates similar to Clay Center and Davis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.