4 resultados para Muco-adhesive gel

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare the use of indirect haemagglutination (IHA) and gel diffusion (GD) tests for serotyping Haemophilus parasuis by the Kielstein-Rapp-Gabrielson scheme. All 15 serovar reference strains, 72 Australian field isolates, nine Chinese field isolates, and seven isolates from seven experimentally infected pigs were evaluated with both tests. With the IHA test, 14 of the 15 reference strains were correctly serotyped – with serovar 10 failing to give a titre with serovar 10 antiserum. In the GD test, 13 reference strains were correctly serotyped – with antigen from serovars 7 and 8 failing to react with any antiserum. The IHA methodology serotyped a total of 45 of 81 field isolates while the GD methodology serotyped a total of 48 isolates. For 29 isolates, the GD and IHA methods gave discordant results. It was concluded that the IHA is a good additional test for the serotyping of H. parasuis by the KRG scheme if the GD methodology fails to provide a result or shows unusual cross-reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoglobulin Y is different from most of the other immunoglobulins because it does not bind protein A or protein G. Thiophilic gel chromatography has been successfully used to purify IgY from chicken egg yolk, but the technology has not previously been used to purify IgY from serum. In this research note, we describe the optimization of T-gel chromatography for purification of IgY from serum. Data are provided on the recovery and purity of IgY obtained using potassium sulfate buffers of different concentrations. Decreasing the strength of potassium sulfate buffer from 0.5 to 0.3 M did not alter the amount of IgY recovered but increased the purity. Using 0.3 M potassium sulphate, we recovered approximately 63.7% of the serum Ig as almost pure IgY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequestration of parasite-infected red blood cells (RBCs) in the microvasculature is an important pathological feature of both bovine babesiosis caused by Babesia bovis and human malaria caused by Plasmodium falciparum. Surprisingly, when compared with malaria, the cellular and molecular mechanisms that underlie this abnormal circulatory behaviour for RBCs infected with B. bovis have been relatively ignored. Here, we present some novel insights into the adhesive and mechanical changes that occur in B. bovis-infected bovine RBCs and compare them with the alterations that occur in human RBCs infected with P. falciparum. After infection with B. bovis, bovine RBCs become rigid and adhere to vascular endothelial cells under conditions of physiologically relevant flow. These alterations are accompanied by the appearance of ridge-like structures on the RBC surface that are analogous, but morphologically and biochemically different, to the knob-like structures on the surface of human RBCs infected with P. falciparum. Importantly, albeit for a limited number of parasite lines examined here, the extent of these cellular and rheological changes appear to be related to parasite virulence. Future investigations to identify the precise molecular composition of ridges and the proteins that mediate adhesion will provide important insight into the pathogenesis of both babesiosis and malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.