6 resultados para Mt. Lafayette

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mt Garnet Landcare Group commissioned a survey of landholders within the Upper Herbert and Upper Burdekin River Catchments to assess the density of native woodlands and to gauge the extent of exotic weed infestation. Twenty-four of 49 landholders responded, representing an area of nearly 500 000 ha or 47% of the total area. Dense native woodland covers 24% (>117 000 ha) of the area surveyed, while a further 30% (140 000 ha) supports moderately dense stands. The dense stands are largely confined to the highly fertile alluvial soils (26% dense woodland) and the lower fertility sandy-surfaced soils (33% or >96 000 ha). Moderate and dense infestations of exotic weeds, principally Lantana camara, occur on 54% (20 000 ha) of alluvial soils and on 13% of sandy-surfaced soils (39 000 ha), where praxelis (Praxelis clematidia) is the major weed. Basaltic soils have low levels of both dense woodland and exotic weed infestation. Some implications of the results are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological control of parthenium, a major weed in grazing areas in Australia, was initiated in the mid 1970s. Since then, nine species of insects and two rust fungi have been introduced. Evaluation using pesticide exclusion at two sites (Mt. Panorama and Plain Creek) in Queensland, Australia, revealed that classical biological control had a significant negative effect on the target weed, but the impact varied between years. In this study, I quantified the effects of biological control of parthenium on grass production. Grass production declined with the increase in parthenium biomass. Significant increase in grass production due to biological control was observed, but only in 1 of 4 yr at Mt. Panorama and 2 of 4 yr at Plain Creek. At Mt. Panorama, there was a 40% increase in grass biomass in 1997 because of defoliation by Zygogramma bicolorata and galling by Epiblema strenuana. At Plain Creek, grass biomass increased by 52% in 1998 because of E. strenuana and by 45% in 2000 because of combined effects of E. strenuana and the summer rust Puccinia melampodii. This study provides evidence on the beneficial effects of biological control of parthenium in areas under limited grazing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An estimated 110 Mt of dust is eroded by wind from the Australian land surface each year, most of which originates from the arid and semi-arid rangelands. Livestock production is thought to increase the susceptibility of the rangelands to wind erosion by reducing vegetation cover and modifying surface soil stability. However, research is yet to quantify the impacts of grazing land management on the erodibility of the Australian rangelands, or determine how these impacts vary among land types and over time. We present a simulation analysis that links a pasture growth and animal production model (GRASP) to the Australian Land Erodibility Model (AUSLEM) to evaluate the impacts of stocking rate, stocking strategy and land condition on the erodibility of four land types in western Queensland, Australia. Our results show that declining land condition, over stocking, and using inflexible stocking strategies have potential to increase land erodibility and amplify accelerated soil erosion. However, land erodibility responses to grazing are complex and influenced by land type sensitivities to different grazing strategies and local climate characteristics. Our simulations show that land types which are more resilient to livestock grazing tend to be least susceptible to accelerated wind erosion. Increases in land erodibility are found to occur most often during climatic transitions when vegetation cover is most sensitive to grazing pressure. However, grazing effects are limited during extreme wet and dry periods when the influence of climate on vegetation cover is strongest. Our research provides the opportunity to estimate the effects of different land management practices across a range of land types, and provides a better understanding of the mechanisms of accelerated erosion resulting from pastoral activities. The approach could help further assessment of land erodibility at a broader scale notably if combined with wind erosion models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indigofera linnaei (or Birdsville Indigo) is a native legume with widespread abundance in pastures across northern Australian, and occurs in all northern regions of Australia from the tropical Kimberleys and arid central Australia to subhumid coastal Queensland (Figure 1). I. linnaei in central Australia has been linked to canine fatalities due to the toxin indospicine. Indospicine, an analog of arginine, is an unusual non-protein amino acid found only in a number of Indigofera species including I. linnaei. Dogs are particularly sensitive to the heptatoxicity of indospicine, and while they do not themselves consume the plant, dogs have been poisoned indirectly through the consumption of indospicine-contaminated meat from horses and camels grazing in regions where I. linnaei is common (Hegarty and Pound 1988, FitzGerald et al 2011). I. linnaei is observed to occur in various forms from strongly prostrate in south-east Queensland to an erect shrub-like form growing to more than 50cm in height in some northern regions. It mostly occurs as a minor proportion of native pasture but denser stands develop under certain circumstances. The indospicine content of I. linnaei has not previously been reported outside of central Australia, and in this study we investigate the indospicine content of plant samples collected across various regions, including both prostrate and upright forms. All samples were collected in March-July, dried, milled and analysed by UPLC-MS/MS in an adaption of our method (Tan et al 2014). Indospicine was determined in all I. linnaei plant samples regardless of region or growth form (Table 1). Measured levels were in the range 159.5 to 658.8 mg/kg DM and indicate that this plant may pose a similar problem in all areas dependent on local seasonal abundance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reforestation will have important consequences for the global challenges of mitigating climate change, arresting habitat decline and ensuring food security. We examined field-scale trade-offs between carbon sequestration of tree plantings and biodiversity potential and loss of agricultural land. Extensive surveys of reforestation across temperate and tropical Australia (N = 1491 plantings) were used to determine how planting width and species mix affect carbon sequestration during early development (< 15 year). Carbon accumulation per area increased significantly with decreasing planting width and with increasing proportion of eucalypts (the predominant over-storey genus). Highest biodiversity potential was achieved through block plantings (width > 40 m) with about 25% of planted individuals being eucalypts. Carbon and biodiversity goals were balanced in mixed-species plantings by establishing narrow belts (width < 20 m) with a high proportion (>75%) of eucalypts, and in monocultures of mallee eucalypt plantings by using the widest belts (ca. 6–20 m). Impacts on agriculture were minimized by planting narrow belts (ca. 4 m) of mallee eucalypt monocultures, which had the highest carbon sequestering efficiency. A plausible scenario where only 5% of highly-cleared areas (<30% native vegetation cover remaining) of temperate Australia are reforested showed substantial mitigation potential. Total carbon sequestration after 15 years was up to 25 Mt CO2-e year−1 when carbon and biodiversity goals were balanced and 13 Mt CO2-e year−1 if block plantings of highest biodiversity potential were established. Even when reforestation was restricted to marginal agricultural land (<$2000 ha−1 land value, 28% of the land under agriculture in Australia), total mitigation potential after 15 years was 17–26 Mt CO2-e year−1 using narrow belts of mallee plantings. This work provides guidance on land use to governments and planners. We show that the multiple benefits of young tree plantings can be balanced by manipulating planting width and species choice at establishment. In highly-cleared areas, such plantings can sequester substantial biomass carbon while improving biodiversity and causing negligible loss of agricultural land.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methods for estimating methane emissions from cattle as used in the Australian national inventory are based on older data that have now been superseded by a large amount of more recent data. Recent data suggested that the current inventory emissions estimates can be improved. To address this issue, a total of 1034 individual animal records of daily methane production (MP) was used to reassess the relationship between MP and each of dry matter intake (DMI) and gross energy intake (GEI). Data were restricted to trials conducted in the past 10 years using open-circuit respiration chambers, with cattle fed forage-based diets (forage >70%). Results from diets considered to inhibit methanogenesis were omitted from the dataset. Records were obtained from dairy cattle fed temperate forages (220 records), beef cattle fed temperate forages (680 records) and beef cattle fed tropical forages (133 records). Relationships were very similar for all three production categories and single relationships for MP on a DMI or GEI basis were proposed for national inventory purposes. These relationships were MP (g/day) = 20.7 (±0.28) × DMI (kg/day) (R2 = 0.92, P < 0.001) and MP (MJ/day) = 0.063 (±0.008) × GEI (MJ/day) (R2 = 0.93, P < 0.001). If the revised MP (g/day) approach is used to calculate Australia’s national inventory, it will reduce estimates of emissions of forage-fed cattle by 24%. Assuming a global warming potential of 25 for methane, this represents a 12.6 Mt CO2-e reduction in calculated annual emissions from Australian cattle.