86 resultados para Mosquiot breeding sites
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Φ = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
Breeding by several of the spore-feeding species in the genus Phaulothrips is shown to be associated with abandoned tunnels of bees and scolytid beetles, as well as with the dead seed capsules of Eucalyptus species. The breeding sites for other species in the genus remain unknown, but 16 species are here recognised from Australia, of which the following six are newly described: P. daguilaris, P. flindersi, P. kingae, P. kranzae, P. oakeyi, P. whyallae. Copyright © 2013 Magnolia Press.
Resumo:
Eighty six full-sib Corymbia F1 hybrid families (crosses between C. torelliana and four spotted gum taxa: C. citriodora subsp. variegata, C. citriodora subsp. citriodora, C. henryi and C. maculata), were planted in six trials across six disparate sites in south-eastern Queensland to evaluate their productivity and determine their potential utility for plantation forestry. In each trial, the best-growing 20% of hybrid families grew significantly faster (P=0.05) than open-pollinated seedlots of the parent species Corymbia citriodora subsp. variegata, ranging from 107% to 181% and 127% to 287% of the height and diameter respectively. Relative performance of hybrid families growing on more than one site displayed consistency in ranking for growth across sites and analysis showed low genotype-by-environment interaction. Heritability estimates based on female and male parents across two sites at age six years for height and diameter at breast height, were high (0.62±0.28 to 0.64±0.35 and 0.31±0.21 to 0.69±0.37 respectively), and low to moderate (0.03±0.04 to 0.33±0.22) for stem straightness, branch size, incidence of ramicorns, and frost and disease resistance traits at ages one to three years. The proportion of dominance variance for height and diameter had reduced to zero by age six years. Based on these promising results, further breeding and pilot-scale family forestry and clonal forestry deployment is being undertaken. These results have also provided insights regarding the choice of a future hybrid breeding strategy.
Resumo:
In current simulation packages for the management of extensive beef-cattle enterprises, the relationships for the key biological rates (namely conception and mortality) are quite rudimentary. To better estimate these relationships, cohort-level data covering 17 100 cow-years from six sites across northern Australia were collated and analysed. Further validation data, from 7200 cow-years, were then used to test these relationships. Analytical problems included incomplete and non-standardised data, considerable levels of correlation among the 'independent' variables, and the close similarity of alternate possible models. In addition to formal statistical analyses of these data, the theoretical equations for predicting mortality and conception rates in the current simulation models were reviewed, and then reparameterised and recalibrated where appropriate. The final models explained up to 80% of the variation in the data. These are now proposed as more accurate and useful models to be used in the prediction of biological rates in simulation studies for northern Australia. © The State of Queensland (through the Department of Agriculture, Fisheries and Forestry) 2012. © CSIRO.
Resumo:
Key message Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Context Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. Aims This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Methods Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Results Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Conclusion Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.
Resumo:
Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.
Resumo:
Ten growth or wood-quality traits were assessed in three nearby Corymbia citriodora subsp. variegata (CCV) open-pollinated family-within-provenance trials (18 provenances represented by a total of 374 families) to provide information for the development of a breeding program targeting both pulp and solid-wood products. Growth traits (diameter at breast high over bark [DBH], height and conical volume) were assessed at 3 and 7 years of age. Wood-quality traits (density [DEN], Kraft pulp yield [KPY], modulus of elasticity [MoE] and microfibril angle [MfA]) were predicted using near-infrared spectroscopy on wood samples collected from these trials when aged between 10 and 12 years. The high average KPY, DEN and MoE, and low average MfA observed indicates CCV is very suitable for both pulp and timber products. All traits were under moderate to strong genetic control. In across- trials analyses, high (>0.4) heritability estimates were observed for height, DEN, MoE and MfA, while moderate heritability estimates (0.24 to 0.34) were observed for DBH, volume and KPY. Most traits showed very low levels of genotype × site interaction. Estimated age–age genetic correlations for growth traits were strong at both the family (0.97) and provenance (0.99) levels. Relationships among traits (additive genetic correlation estimates) were favourable, with strong and positive estimates between growth traits (0.84 to 0.98), moderate and positive values between growth and wood-quality traits (0.32 to 0.68), moderate and positive between KPY and MoE (0.64), and high and positive between DEN and MoE (0.82). However, negative (but favourable) correlations were detected between MfA and all other evaluated traits (−0.31 to −0.96). The genetic correlation between the same trait expressed on two different sites, at family level, ranged from 0.24 to 0.42 for growth traits, and from 0.29 to 0.53 for wood traits. Therefore simultaneous genetic improvement of growth and wood property traits in CCV for the target environment in south-east Queensland should be possible, given the moderate to high estimates of heritability and favourable correlations amongst all traits studied, unless genotype × site interactions are greater than was evident. © 2016 NISC (Pty) Ltd
Resumo:
Sleepy cod (Oxyeleotris lineolatus Steindachner) is a tropical species of eleotrid native to northern Australia. A related species, sand or marbled goby, is the highest priced freshwater fish in Asia, and a market for a similar fish exists in expatriate Chinese communities. Sleepy cod breed when minimum temperatures reach 24 °C for more than 3 days. During the breeding season the genital papilla is broad and flattened in females compared to the triangular papilla of males and juveniles. Spawning pairs were usually of approximately equal size. Females could spawn up to 10 times during one breeding season. Wet weather increased the frequency of spawning. Eggs were usually laid hanging from the underside of a surface. Most spawning occurred between 05:00 and 10:00 h. Females attended egg masses immediately after spawning, after which males cared for eggs until hatching, 3–5 days later. Agitation of the egg mass was essential for development. The mean number of eggs per spawning was 43 130. Larvae commenced feeding 2–5 days after hatching, on plankton from 100 to 250 m in size. A spawning trap used to collect egg masses is described. The breeding biology of sleepy cod is considered to be an adaptation to the monsoonal tropics.
Resumo:
Genetic and phenotypic parameters for respiration rate (RR) and rectal temperature (RT) are presented for weaner and hogget Merino rams, at Longreach and Julia Creek, Queensland. Heritability estimates for RT and RR at both sites and at both ages ranged from moderate to very high. Phenotypic and genetic correlations between these characters are also reported. AAABG 14th Conference; Proceedings of the Association for the Advancement of Animal Breeding and Genetics. AAABG
Resumo:
There is substantial variation in bull breeding soundness evaluation procedures and reports in Australia; the situation is compounded by difficulties in interpretation and the validity of many reports. In an effort to overcome this, the scientific literature was reviewed [Fordyce G. In: Fordyce G, editor. Bull fertility: selection and management in Australia. Eight Mile Plains, Australia: Australian Cattle Vets; 2002] and the needs of stakeholders were considered in preparing a manual, Evaluating and Reporting Bull Fertility [Entwistle KW, Fordyce G. Evaluating and reporting bull fertility. Eight Mile Plains, Australia: Australian Cattle Vets; 2003.] that outlined standards for assessing and reporting bull breeding soundness. A new recording and reporting system, called Bull Reporter, is based on standards from this manual and groups bull fertility traits into five summary categories: Scrotum, Physical, Crush-side Semen, Sperm Morphology, and Serving. The client will generally select which categories they wish to have included in the evaluation to suit their specific purposes. While there is adequate room for comments, the veterinarian is not required to make an overall judgment of whether the bull has normal capacity to sire calves under natural mating management, but ensures the standards for each selected category are met. Professional, standardised, easy-to-read reports are produced either electronically [Entwistle KW, Fordyce G. Evaluating and reporting bull fertility. Eight Mile Plains, Australia: Australian Cattle Vets; 2003.] or manually. A bull owner or their agent signs the certificate to affirm that bulls have not undergone procedures to rectify faults which may have otherwise caused them to fail the standards. An accreditation system for assessing sperm morphology was established because of its demonstrated relationship with pregnancy rates and because of the difficulties in achieving consistent and accurate assessments among laboratories. It is considered that Bull Reporter is applicable to beef and dairy bulls across all levels of management, genotypes and environments throughout Australia, with substantial potential for application elsewhere in the world.
Resumo:
Grain samples from a combined intermediate and advanced stage barley breeding trial series, grown at two sites in two consecutive years were assessed for detailed grain quality and ruminant feed quality. The results indicated that there were significant genetic and environmental effects for “feed” traits as measured using grain hardness, acid detergent fibre (ADF), starch and in-sacco dry matter digestibility (ISDMD) assays. In addition, there was strong genotypic discrimination for the regressed feed performance traits, namely Net Energy (NE) and Average Daily Gain (ADG). There was considerable variation in genetic correlations for all traits based on variance from the cultivars used, sites or laboratory processing effects. There was a high level of heritability ranging from 89% to 88% for retention, 60% to 80% for protein and 56% to 68% for ADF. However, there were only low to moderate levels of heritability for the feed traits, with starch 30–39%, ISDMD 55–63%, ADF 56–68%, particle size 47–73%, 31–48% NE and ADG 44–51%. These results suggest that there were real differences in the feed performance of barleys and that selection for cattle feed quality is potentially a viable option for breeding programs.
Resumo:
In this study, 120–144 commercial varieties and breeding lines were assessed for grain size attributes including plump grain (>2.8 mm) and retention (>2.5 mm+>2.8 mm). Grain samples were produced from replicated trials at 25 sites across four years. Climatic conditions varied between years as well as between sites. Several of the trial sites were irrigated while the remaining were produced under dryland conditions. A number of the dryland sites suffered severe drought stress. The grain size data was analysed for genetic (G), environmental (E) and genotype by environment (G×E) interactions. All analyses included maturity as a covariate. The genetic effect on grain size was greater than environmental or maturity effects despite some sites suffering terminal moisture stress. The model was used to calculate heritability values for each site used in the study. These values ranged from 89 to 98% for plump grain and 88 to 96% for retention. The results demonstrated that removing the sources of non-heritable variation, such as maturity and field effects, can improve genetic estimates of the retention and plump grain fractions. By partitioning all variance components, and thereby having more robust estimates of genetic differences, plant breeders can have greater confidence in selecting barley genotypes which maintain large, stable grain size across a range of environments.
Resumo:
In this study, we assessed a broad range of barley breeding lines and commercial varieties by three hardness methods (two particle size methods and one crush resistance method (SKCS—Single-Kernel Characterization System), grown at multiple sites to see if there was variation in barley hardness and if that variation was genetic or environmentally controlled. We also developed near-infrared reflectance (NIR) calibrations for these three hardness methods to ascertain if NIR technology was suitable for rapid screening of breeding lines or specific populations. In addition, we used this data to identify genetic regions that may be associated with hardness. There were significant (p<0.05) genetic effects for the three hardness methods. There were also environmental effects, possibly linked to the effect of protein on hardness, i.e. increasing protein resulted in harder grain. Heritability values were calculated at >85% for all methods. The NIR calibrations, with R2 values of >90%, had Standard Error of Prediction values of 0.90, 72 and 4.0, respectively, for the three hardness methods. These equations were used to predict hardness values of a mapping population which resulted in genetic markers being identified on all chromosomes but chromosomes 2H, 3H, 5H, 6H and 7H had markers with significant LOD scores. The two regions on 5H were on the distal end of both the long and short arms. The region that showed significant LOD score was on the long arm. However, the region on the short arm associated with the hardness (hordoindoline) genes did not have significant LOD scores. The results indicate that barley hardness is influenced by both genotype and environment and that the trait is heritable, which would allow breeders to develop very hard or soft varieties if required. In addition, NIR was shown to be a reliable tool for screening for hardness. While the data set used in this study has a relatively low variation in hardness, the tools developed could be applied to breeding populations that have large variation in barley grain hardness.
Resumo:
The aim of the pedigree-based genome mapping project is to investigate and develop systems for implementing marker assisted selection to improve the efficiency of selection and increase the rate of genetic gain in breeding programs. Pedigree-based whole genome marker application provides a vehicle for incorporating marker technologies into applied breeding programs by bridging the gap between marker-trait association and marker implementation. We report on the development of protocols for implementation of pedigree-based whole genome marker analysis in breeding programs within the Australian northern winter cereals region. Examples of applications from the Queensland DPI&F wheat and barley breeding programs are provided, commenting on the use of microsatellites and other types of molecular markers for routine genomic analysis, the integration of genotypic, phenotypic and pedigree information for targeted wheat and barley lines, the genomic impacts of strong selection pressure in case study pedigrees, and directions for future pedigree-based marker development and analysis.