10 resultados para Molar concentration

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fillets of five fish species were irradiated at 0, 1 and 3kGy to investigate whether the K-value test of freshness can be applied to irradiated fish. Following irradiation, the fillets were stored on ice and sampled regularly for K-value analysis. Hypoxanthine (Hx) and total nucleotide content were also determined on fillets of two species. K-values of irradiated fillets were generally lower than those of unirradiated controls. Hypoxanthine levels paralleled the K-value changes. These results indicated that quality standards based on K-values or Hx levels that have been set for unirradiated species cannot be directly applied to fish that has been irradiated. Total nucleotide content did not appear to be affected by irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adults of a phosphine-resistant strain of Sitophilus oryzae (L) were exposed to constant phosphine concentrations of 0.0035-0.9 mg litre(-1) for periods of between 20 and 168 h at 25 °C, and the effects of time and concentration on mortality were quantified. Adults were also exposed to a series of treatments lasting 48, 72 or 168 h at 25 °C, during which the concentration of phosphine was varied. The aim of this study was to determine whether equations from experiments using constant concentrations could be used to predict the efficacy of changing phosphine concentrations against adults of S oryzae. A probit plane without interaction, in which the logarithms of time (t) and concentration (C) were variables, described the effects of concentration and time on mortality in experiments with constant concentrations. A derived equation of the form C^nt = k gave excellent predictions of toxicity when applied to data from changing concentration experiments. The results suggest that for resistant S oryzae adults there is nothing inherently different between constant and changing concentration regimes, and that data collected from fixed concentrations can be used to develop equations for predicting mortality in fumigations in which phosphine concentration changes. This approach could simplify the prediction of efficacy of typical fumigations in which concentrations tend to rise and then fall over a period of days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland pineapple production for the year ending 31 March, 1986, was 142000 t (ABS 1988). Pineapple juice provides the major processing outlet, accounting for about 70% of the State's fruit juice output. Most juice is concentrated by vacuum evaportion to reduce storage and transport costs. In recent years, reverse osmosis (R.O.) has found increasing application for concentrating food liquids, particularly dairy products (Schmidt, 1987). Advantages include lower energy consumption and better product quality retention. There have been a number of publications on fruit juice concentration by R.O. These have included apple juice (Sheu and Wiley 1984; Chua et al 1987; Paulson 1985), orange juice (Papanicolaou et al 1984), mandarin juice (Fukutani and Ogawa 1983, tomato juice (Robe 1983; Watanabe 1982; Gheradi et al 1986), grapefruit and lemon juices (Braddock et al 1988). However, information on pineapple juice concentration by R.O. is lacking. The aim of this research was to measure the effects of juice pre-treatment, operating temperature, membrane type, flow rate, pressure and degree of concentration on pineapple juice R.O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two pot experiments were conducted in two different seasons at the University of Agricultural Science, Bangalore, India, to study (a) the relationship between chlorophyll concentration (by measuring the leaf light-transmittance characteristics using a SPAD metre) and transpiration efficiency (TE) and (b) the effect of leaf N on chlorophyll and TE relationship in peanut. In Experiment (Expt) I, six peanut genotypes with wide genetic variation for the specific leaf area (SLA) were used. In Expt II, three non-nodulating isogenic lines were used to study the effect of N levels on leaf chlorophyll concentration–TE relationship without potential confounding effects in biological nitrogen fixation. Leaf N was manipulated by applying N fertiliser in Expt II. Chlorophyll concentration, TE (g dry matter kg−1 of H2O transpired, measured using gravimetric method), specific leaf nitrogen (g N m−2, SLN), SLA (cm2 g−1), carbon isotope composition (Δ13C) were determined in the leaves sampled during the treatment period (35–55 days after sowing) in the two experiments. Results showed that the leaf chlorophyll concentration expressed as soil plant analytical development (SPAD) chlorophyll metre reading (SCMR) varied significantly among genotypes in Expt I and as a result of N application in Expt II. Changes in leaf N levels were strongly associated with changes in SCMR, TE and Δ13C. In both the experiments, a significant positive relationship between SCMR and TE with similar slopes but differing intercepts was noticed. However, correction of TE for seasonal differences in vapour pressure deficit (VPD) between the two experiments resulted in a single and stronger relationship between SCMR and TE. There was a significant inverse relationship between SCMR and Δ13C, suggesting a close linkage between chlorophyll concentration and Δ13C in peanut. This study provides the first evidence for a significant positive relationship between TE and leaf chlorophyll concentration in peanut. The study also describes the effect of growing environment on the relationships among SLA, SLN and SCMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single or multiple factors implicated in subsoil constraints including salinity, sodicity, and phytotoxic concentrations of chloride (Cl) are present in many Vertosols including those occurring in Queensland, Australia. The variable distribution and the complex interactions that exist between these constraints limit the agronomic or management options available to manage the soil with these subsoil constraints. The identification of crops and cultivars adapted to these adverse subsoil conditions and/or able to exploit subsoil water may be an option to maintain productivity of these soils. We evaluated relative performance of 5 winter crop species, in terms of grain yields, nutrient concentration, and ability to extract soil water, grown on soils with various levels and combinations of subsoil constraints in 19 field experiments over 2 years. Subsoil constraints were measured by levels of soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). Increasing levels of subsoil constraints significantly decreased maximum depth of water extraction, grain yield, and plant-available water capacity for all the 5 crops and more so for chickpea and durum wheat than bread wheat, barley, or canola. Increasing soil Cl levels had a greater restricting effect on water availability than did ECse and ESP. We developed empirical relationships between soil Cl, ECse, and ESP and crop lower limit (CLL) for estimating subsoil water extraction by 5 winter crops. However, the presence of gypsum influenced the ability to predict CLL based on the levels of ECse. Stronger relationships between apparent unused plant-available water (CLL - LL15; LL15 is lower limit at -1.5 MPa) and soil Cl concentrations than ESP or ECse suggested that the presence of high Cl in these soils most likely inhibited the subsoil water extraction by the crops. This was supported by increased sodium (Na) and Cl concentration with a corresponding decrease in calcium (Ca) and potassium (K) in young mature leaf of bread wheat, durum wheat, and chickpea with increasing levels of subsoil constraints. Of the 2 ions, Na and Cl, the latter appears to be more damaging than the former, resulting in plant dieback and reduced grain yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The psocid Liposcelis bostrychophila Badonnel, is a widespread, significant pest of stored commodities, has developed strong resistance to phosphine, the major grain disinfestant. The aim was to develop effective fumigation protocols to control this resistant pest. RESULTS: Time to population extinction of all life stages (TPE) in days was evaluated at a series of phosphine concentrations and temperatures at two relative humidities. Regression analysis showed that temperature, concentration and relative humidity all contributed significantly to describing TPE (P < 0.001, R2 = 0.95), with temperature being the dominant variable, accounting for 74.4% of the variation. Irrespective of phosphine concentration, TPE was longer at lower temperatures and high humidity (70% RH) and shorter at higher temperatures and low humidity (55% RH). At any concentration of phosphine, a combination of higher temperature and lower humidity provides the shortest fumigation period to control resistant L. bostrychophila. For example, 19 and 11 days of fumigation are required at 15 °C and 70% RH at 0.1 and 1.0 mg L-1 of phosphine respectively, whereas only 4 and 2 days are required at 35 °C and 55% RH for the same respective concentrations. CONCLUSIONS: The developed fumigation protocols will provide industry with flexibility in application of phosphine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sorghum ergot, caused by Claviceps africana, has remained a major disease problem in Australia since it was first recorded in 1996, and is the focus of a range of biological and integrated management research. Artificial inoculation using conidial suspensions is an important tool in this research. Ergot infection is greatly influenced by environmental factors, so it is important to reduce controllable sources of variation such as inoculum concentration. The use of optical density was tested as a method of quantifying conidial suspensions of C. africana, as an alternative to haemocytometer counts. This method was found to be accurate and time efficient, with possible applications in other disease systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromolaena odorata (L.) King and Robinson (Siam weed) is a highly invasive plant and a high priority for control in north Queensland. It can be effectively treated using high-volume, groundbased herbicide spray equipment, but operational information shows that this control method becomes increasingly difficult in areas where vehicle access is prevented by rougher terrain. Low-volume, high-concentration herbicide applications have proven capable of causing high mortality in these remote situations. Two trials were undertaken between May 2010 and May 2012 to refine effective rates of aminopyralid/fluroxypyr, fluroxypyr and metsulfuron-methyl, only using low-volume, high-concentration applications on Siam weed. Fluroxypyr on its own was as effective as aminopyralid/fluroxypyr as both herbicides caused 95-100% mortality at overlapping rates containing 5 to 18.85 g a.i. L-1 of fluroxypyr. Metsulfuron-methyl caused 100% mortality when applied at 3 and 6 g a.i. L-1. Effective control was achieved with approximately 16 to 22 mL of the solutions per plant, so a 5 L mixture in a backpack could treat 170 to 310 adult plants. There are several options for treating Siam weed on the ground and the choice of methods reflects the area, plant density and accessibility of the infestation. Control information from Siam weed field crews shows that low volume, high concentration herbicide applications applied using a splatter gun are a more efficient method for controlling larger, denser remote infestations than physical removal. By identifying effective herbicides that are applied through low-volume equipment, these trials provide an additional and more efficient tool for controlling Siam weed in remote areas.