9 resultados para Modelling Software

em eResearch Archive - Queensland Department of Agriculture


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Models are abstractions of reality that have predetermined limits (often not consciously thought through) on what problem domains the models can be used to explore. These limits are determined by the range of observed data used to construct and validate the model. However, it is important to remember that operating the model beyond these limits, one of the reasons for building the model in the first place, potentially brings unwanted behaviour and thus reduces the usefulness of the model. Our experience with the Agricultural Production Systems Simulator (APSIM), a farming systems model, has led us to adapt techniques from the disciplines of modelling and software development to create a model development process. This process is simple, easy to follow, and brings a much higher level of stability to the development effort, which then delivers a much more useful model. A major part of the process relies on having a range of detailed model tests (unit, simulation, sensibility, validation) that exercise a model at various levels (sub-model, model and simulation). To underline the usefulness of testing, we examine several case studies where simulated output can be compared with simple relationships. For example, output is compared with crop water use efficiency relationships gleaned from the literature to check that the model reproduces the expected function. Similarly, another case study attempts to reproduce generalised hydrological relationships found in the literature. This paper then describes a simple model development process (using version control, automated testing and differencing tools), that will enhance the reliability and usefulness of a model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We trace the evolution of the representation of management in cropping and grazing systems models, from fixed annual schedules of identical actions in single paddocks toward flexible scripts of rules. Attempts to define higher-level organizing concepts in management policies, and to analyse them to identify optimal plans, have focussed on questions relating to grazing management owing to its inherent complexity. “Rule templates” assist the re-use of complex management scripts by bundling commonly-used collections of rules with an interface through which key parameters can be input by a simulation builder. Standard issues relating to parameter estimation and uncertainty apply to management sub-models and need to be addressed. Techniques for embodying farmers' expectations and plans for the future within modelling analyses need to be further developed, especially better linking planning- and rule-based approaches to farm management and analysing the ways that managers can learn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Models that implement the bio-physical components of agro-ecosystems are ideally suited for exploring sustainability issues in cropping systems. Sustainability may be represented as a number of objectives to be maximised or minimised. However, the full decision space of these objectives is usually very large and simplifications are necessary to safeguard computational feasibility. Different optimisation approaches have been proposed in the literature, usually based on mathematical programming techniques. Here, we present a search approach based on a multiobjective evaluation technique within an evolutionary algorithm (EA), linked to the APSIM cropping systems model. A simple case study addressing crop choice and sowing rules in North-East Australian cropping systems is used to illustrate the methodology. Sustainability of these systems is evaluated in terms of economic performance and resource use. Due to the limited size of this sample problem, the quality of the EA optimisation can be assessed by comparison to the full problem domain. Results demonstrate that the EA procedure, parameterised with generic parameters from the literature, converges to a useable solution set within a reasonable amount of time. Frontier ‘‘peels’’ or Pareto-optimal solutions as described by the multiobjective evaluation procedure provide useful information for discussion on trade-offs between conflicting objectives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective study in the native range to identify potential agents underpins all efforts in classical biological control of weeds. Good agents that demonstrate both a high degree of host specificity and the potential to be damaging are a very limited resource and must therefore be carefully studied and considered. The overseas component is often operationally difficult and expensive but can contribute considerably more than a list of herbivores attacking a particular target. While the principles underlying this foreign component have been understood for some time, recently developed technologies and methods can make very significant contributions to foreign studies. Molecular and genetic characterisations of both target weed and agent organism can be increasingly employed to more accurately define the identity and phylogeny of them. Climate matching and modelling software is now available and can be utilised to better select agents for particular regions of concern. Relational databases can store collection information for analysis and future enquiry while quantification of sampling effort, employment of statistical survey methods and analysis by techniques such as rarefaction curves contribute to efficient and effective searching. Obtaining good and timely identifications for discovered agent organisms is perhaps the most serious issue confronting the modern explorer. The diminishing numbers of specialist taxonomists employed at the major museums while international and national protocols demand higher standards of identity exacerbates the issue. Genetic barcoding may provide a very useful tool to overcome this problem. Native-range work also offers under-exploited opportunities for contributing towards predicting safety, abundance and efficacy of potential agents in their target environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wilmot Senaratne, Bill Palmer and Bob Sutherst recently published their paper 'Applications of CLIMEX modelling leading to improved biological control' in Proceedings of the 16th Australian Weeds Conference. They looked at three examples where modern climate matching techniques using computer software produces decisions and results than might happen using previous techniques such as climadiagrams. Assessment of climatic suitability is important at various stages of a biological control project; from initial foreign exploration, to risk assessment in preparation for the release of a particular agent, through to selection of release sites that maximise the agent´s chances of initial establishment. It is now also necessary to predict potential future distributions of both target weeds and agents under climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Best Use Modelling for Sustainable Australian Sports Field Surfaces project has achieved significant success. The project has attracted participation from councils throughout Australia, with in excess of 300 sports fields evaluated from 18 councils to date. An important project component is the derivation of a recommended standard procedure for specifying the performance of playing surfaces. An associated step has been to establish recommended playing surface performance standards for community level sports fields. The derived modelling also provides information on the expected usage and associated costs of different sports surface development options. This is expected to assist the Australian turf production industry through demonstrating to councils that cost effective natural turf options exist that can meet higher usage expectation (as a viable alternative to synthetic turf). A web-accessed data base system will be made available to councils from January 2010 on (reference to www.passturf.com). This system will enable participating councils to record and analyse field performance over time. The system is considered world-leading, and will help keep the Australian parks industry to the international forefront. Tools developed as part of the project offer councils the opportunity to internally assess the performance of their current sports field provision, to identify any deficiencies and to determine the best corrective measure if any deficiency is identified. This is expected to offer community benefits to both sports facility providers and facility user groups. In turn this will aid the provision of affordable community access to safe and good quality playing surfaces. Tools and associated information material will be made available to councils throughout Australia by the end of this year, via the Parks and Leisure Aust. web site. The Best Use Modelling Project is work in progress. On-going input will be needed to ensure the web-accessed database software is as user friendly as possible, new performance testing data will need to be inputted, and tools provided to participating councils updated. Through the support of HAL there is now a well-structured, nationally-supported system in place for benchmarking playing surfaces and for assisting councils to optimise their resource allocation to sports field upgrade or maintenance work.