14 resultados para Model risk

em eResearch Archive - Queensland Department of Agriculture


Relevância:

40.00% 40.00%

Publicador:

Resumo:

When exposed to hot (22-35 degrees C) and dry climatic conditions in the field during the final 4-6 weeks of pod filling, peanuts (Arachis hypogaea L.) can accumulate highly carcinogenic and immuno-suppressing aflatoxins. Forecasting of the risk posed by these conditions can assist in minimizing pre-harvest contamination. A model was therefore developed as part of the Agricultural Production Systems Simulator (APSIM) peanut module, which calculated an aflatoxin risk index (ARI) using four temperature response functions when fractional available soil water was <0.20 and the crop was in the last 0.40 of the pod-filling phase. ARI explained 0.95 (P <= 0.05) of the variation in aflatoxin contamination, which varied from 0 to c. 800 mu g/kg in 17 large-scale sowings in tropical and four sowings in sub-tropical environments carried out in Australia between 13 November and 16 December 2007. ARI also explained 0.96 (P <= 0.01) of the variation in the proportion of aflatoxin-contaminated loads (>15 mu g/kg) of peanuts in the Kingaroy region of Australia during the period between the 1998/99 and 2007/08 seasons. Simulation of ARI using historical climatic data from 1890 to 2007 indicated a three-fold increase in its value since 1980 compared to the entire previous period. The increase was associated with increases in ambient temperature and decreases in rainfall. To facilitate routine monitoring of aflatoxin risk by growers in near real time, a web interface of the model was also developed. The ARI predicted using this interface for eight growers correlated significantly with the level of contamination in crops (r=095, P <= 0.01). These results suggest that ARI simulated by the model is a reliable indicator of aflatoxin contamination that can be used in aflatoxin research as well as a decision-support tool to monitor pre-harvest aflatoxin risk in peanuts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Glyphosate-resistant cotton varieties are an important tool for weed control in Australian cotton production systems. To increase the sustainability of this technology and to minimise the likelihood of resistance evolving through its use, weed scientists, together with herbicide regulators, industry representatives and the technology owners, have developed a framework that guides the use of the technology. Central to this framework is a crop management plan (CMP) and grower accreditation course. A simulation model that takes into account the characteristics of the weed species, initial gene frequencies and any associated fitness penalties was developed to ensure that the CMP was sufficiently robust to minimise resistance risks. RESULTS: The simulations showed that, when a combination of weed control options was employed in addition to glyphosate, resistance did not evolve over the 30 year period of the simulation. CONCLUSION: These simulations underline the importance of maintaining an integrated system for weed management to prevent the evolution of glyphosate resistance, prolonging the use of glyphosate-resistant cotton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of Australian weeds are exotic plant species that were intentionally introduced for a variety of horticultural and agricultural purposes. A border weed risk assessment system (WRA) was implemented in 1997 in order to reduce the high economic costs and massive environmental damage associated with introducing serious weeds. We review the behaviour of this system with regard to eight years of data collected from the assessment of species proposed for importation or held within genetic resource centres in Australia. From a taxonomic perspective, species from the Chenopodiaceae and Poaceae were most likely to be rejected and those from the Arecaceae and Flacourtiaceae were most likely to be accepted. Dendrogram analysis and classification and regression tree (TREE) models were also used to analyse the data. The latter revealed that a small subset of the 35 variables assessed was highly associated with the outcome of the original assessment. The TREE model examining all of the data contained just five variables: unintentional human dispersal, congeneric weed, weed elsewhere, tolerates or benefits from mutilation, cultivation or fire, and reproduction by vegetative propagation. It gave the same outcome as the full WRA model for 71% of species. Weed elsewhere was not the first splitting variable in this model, indicating that the WRA has a capacity for capturing species that have no history of weediness. A reduced TREE model (in which human-mediated variables had been removed) contained four variables: broad climate suitability, reproduction in less or than equal to 1 year, self-fertilisation, and tolerates and benefits from mutilation, cultivation or fire. It yielded the same outcome as the full WRA model for 65% of species. Data inconsistencies and the relative importance of questions are discussed, with some recommendations made for improving the use of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the variable and changing environment, advisors and farmers are seeking systems that provide risk management support at a number of time scales. The Agricultural Production Systems Research Unit, Toowoomba, Australia has developed a suite of tools to assist advisors and farmers to better manage risk in cropping. These tools range from simple rainfall analysis tools (Rainman, HowWet, HowOften) through crop simulation tools (WhopperCropper and YieldProphet) to the most complex, APSFarm, a whole-farm analysis tool. Most are derivatives of the APSIM crop model. These tools encompass a range of complexity and potential benefit to both the farming community and for government policy. This paper describes, the development and usage of two specific products; WhopperCropper and APSFarm. WhopperCropper facilitates simulation-aided discussion of growers' exposure to risk when comparing alternative crop input options. The user can readily generate 'what-if' scenarios that separate the major influences whilst holding other factors constant. Interactions of the major inputs can also be tested. A manager can examine the effects of input levels (and Southern Oscillation Index phase) to broadly determine input levels that match their attitude to risk. APSFarm has been used to demonstrate that management changes can have different effects in short and long time periods. It can be used to test local advisors and farmers' knowledge and experience of their desired rotation system. This study has shown that crop type has a larger influence than more conservative minimum soil water triggers in the long term. However, in short term dry periods, minimum soil water triggers and maximum area of the various crops can give significant financial gains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The threat and management of glyphosate# resistant weeds are major issues facing northern region growers. At present five weeds are confirmed glyphosate-resistant: barnyard grass, liverseed grass, windmill grass, annual ryegrass and flaxleaf fleabane. This project used 25 experiments to investigate the ecology of the grass weeds, plus new or improved chemical and non-chemical control tactics for them. The refined glyphosate resistance model developed in this project used the experiments' findings to predict the long-term impacts on evolution of resistance and on seed bank numbers of resistant weeds. These data led to revised management and resistance avoidance strategies, which were published in the Reporter newsletter, and via an on-line risk assessment tool. - See more at: http://finalreports.grdc.com.au/UQ00054#sthash.oTkCN4Sk.dpuf

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a participatory modelling framework that integrates information from interviews and discussions with farmers and consultants, with dynamic bio-economic models to answer complex questions on the allocation of limited resources at the farm business level. Interviews and discussions with farmers were used to: describe the farm business; identify relevant research questions; identify potential solutions; and discuss and learn from the whole-farm simulations. The simulations are done using a whole-farm, multi-field configuration of APSIM (APSFarm). APSFarm results were validated against farmers' experience. Once the model was accepted by the participating farmers as a fair representation of their farm business, the model was used to explore changes in the tactical or strategic management of the farm and results were then discussed to identify feasible options for improvement. Here we describe the modelling framework and present an example of the application of integrative whole farm system tools to answer relevant questions from an irrigated farm business case study near Dalby (151.27E - 27.17S), Queensland, Australia. Results indicated that even though cotton crops generates more farm income per hectare a more diversified rotation with less cotton would be relatively more profitable, with no increase in risk, as a more cotton dominated traditional rotation. Results are discussed in terms of the benefits and constraints from developing and applying more integrative approaches to represent farm businesses and their management in participatory research projects with the aim of designing more profitable and sustainable irrigated farming systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Decision-making in weed management involves consideration of limited budgets, long time horizons, conflicting priorities, and as a result, trade-offs. Economics provides tools that allow these issues to be addressed and is thus integral to management of the risks posed by weeds. One of the critical issues in weed risk management during the early stages of an invasion concerns feasibility of eradication. We briefly review how economics may be used in weed risk management, concentrating on this management strategy. Location: Australia. Methods: A range of innovative studies that investigate aspects of weed risk management are reviewed. We show how these could be applied to newly invading weeds, focussing on methods for investigating eradication feasibility. In particular, eradication feasibility is analysed in terms of cost and duration of an eradication programme, using a simulation model based on field-derived parameter values for chromolaena, Chromolaena odorata. Results: The duration of an eradication programme can be reduced by investing in progressively higher amounts of search effort per hectare, but increasing search area will become relatively more expensive as search effort increases. When variation in survey and control success is taken into account, increasing search effort also reduces uncertainty around the required duration of the eradication programme. Main conclusions: Economics is integral to the management of the risks posed by weeds. Decision analysis, based on economic principles, is now commonly used to tackle key issues that confront weed managers. For eradication feasibility, duration and cost of a weed eradication programme are critical components; the dimensions of both factors can usefully be estimated through simulation. © 2013 John Wiley & Sons Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the limited resources available for weed management, a strategic approach is required to give the best bang for your buck. The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species invasive potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we describe and compare two individual-based models constructed to investigate how genetic factors influence the development of phosphine resistance in lesser grain borer (R. dominica). One model is based on the simplifying assumption that resistance is conferred by alleles at a single locus, while the other is based on the more realistic assumption that resistance is conferred by alleles at two separate loci. We simulated the population dynamic of R. dominica in the absence of phosphine fumigation, and under high and low dose phosphine treatments, and found important differences between the predictions of the two models in all three cases. In the absence of fumigation, starting from the same initial frequencies of genotypes, the two models tended to different stable frequencies, although both reached Hardy-Weinberg equilibrium. The one-locus model exaggerated the equilibrium proportion of strongly resistant beetles by 3.6 times, compared to the aggregated predictions of the two-locus model. Under a low dose treatment the one-locus model overestimated the proportion of strongly resistant individuals within the population and underestimated the total population numbers compared to the two-locus model. These results show the importance of basing resistance evolution models on realistic genetics and that using oversimplified one-locus models to develop pest control strategies runs the risk of not correctly identifying tactics to minimise the incidence of pest infestation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.