28 resultados para Mid-Infrared
em eResearch Archive - Queensland Department of Agriculture
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.
Resumo:
Methylglyoxal (2-oxopropanal) is a compound known to contribute to the non-peroxide antimicrobial activity of honeys. The feasibility of using infrared spectroscopy as a predictive tool for honey antibacterial activity and methylglyoxal content was assessed. A linear relationship was found between methylglyoxal content (279–1755 mg/kg) in Leptospermum polygalifolium honeys and bacterial inhibition for Escherichiacoli (R2 = 0.80) and Staphylococcusaureus (R2 = 0.64). A good prediction of methylglyoxal (R2 0.75) content in honey was achieved using spectroscopic data from the mid infrared (MIR) range in combination with partial least squares regression. These results indicate that robust predictive equations could be developed using MIR for commercial application where the prediction of bacterial inhibition is needed to ‘value’ honeys with methylglyoxal contents in excess of 200 mg/kg.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).
Resumo:
The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.
Resumo:
The fatty acid composition of ground nuts (Arachis hypogaea L.) commonly known as peanuts, is an important consideration when a new variety is being released. The composition impacts on nutrition and, importantly, self-life of peanut products. To select for suitable breeding material, it was necessary to develop a rapid, non-derstructive and cost-efficient method. Near infrared spectroscopy was chosen as that methodology. Calibrations were developed for two major fatty-acid components, oleic and linoleic acids and two minor components, palmitic and stearic acids, as well as total oil content. Partial least squares models indicated a high level of precision with a squared multiple correlation coefficient of greater than 0.90 for each constitutent. Standard errors for prediction for oleic, linoleic, palmitic, stearic acids and total oil content were 6.4%, 4.5%, 0.8%, 0.9% and 1.3% respectively. The results demonstrated that reasonable calibrations could be developed to predict oil composition and content of peanuts for a breeding programme.
Resumo:
Volatile chemical compounds responsible for the aroma of wine are derived from a number of different biochemical and chemical pathways. These chemical compounds are formed during grape berry metabolism, crushing of the berries, fermentation processes (i.e. yeast and malolactic bacteria) and also from the ageing and storage of wine. Not surprisingly, there are a large number of chemical classes of compounds found in wine which are present at varying concentrations (ng L-1 to mg L-1), exhibit differing potencies, and have a broad range of volatilities and boiling points. The aim of this work was to investigate the potential use of near infrared (NIR) spectroscopy combined with chemometrics as a rapid and low-cost technique to measure volatile compounds in Riesling wines. Samples of commercial Riesling wine were analyzed using an NIR instrument and volatile compounds by gas chromatography (GC) coupled with selected ion monitoring mass spectrometry. Correlation between the NIR and GC data were developed using partial least-squares (PLS) regression with full cross validation (leave one out). Coefficients of determination in cross validation (R 2) and the standard error in cross validation (SECV) were 0.74 (SECV: 313.6 μg L−1) for esters, 0.90 (SECV: 20.9 μg L−1) for monoterpenes and 0.80 (SECV: 1658 ?g L-1) for short-chain fatty acids. This study has shown that volatile chemical compounds present in wine can be measured by NIR spectroscopy. Further development with larger data sets will be required to test the predictive ability of the NIR calibration models developed.
Resumo:
Three drafts of Bos indicus cross steers (initially 178-216 kg) grazed Leucaena-grass pasture [Leucaena leucocephala subspecies glabrata cv. Cunningham with green panic (Panicum maximum cv. trichoglume)] from late winter through to autumn during three consecutive years in the Burnett region of south-east Queensland. Measured daily weight gain (DWGActual) of the steers was generally 0.7-1.1 kg/day during the summer months. Estimated intakes of metabolisable energy and dry matter (DM) were calculated from feeding standards as the intakes required by the steers to grow at the DWGActual. Diet attributes were predicted from near infrared reflectance spectroscopy spectra of faeces (F.NIRS) using established calibration equations appropriate for northern Australian forages. Inclusion of some additional reference samples from cattle consuming Leucaena diets into F.NIRS calibrations based on grass and herbaceous legume-grass pastures improved prediction of the proportion of Leucaena in the diet. Mahalanobis distance values supported the hypothesis that the F.NIRS predictions of diet crude protein concentration and DM digestibility (DMD) were acceptable. F.NIRS indicated that the percentage of Leucaena in the diet varied widely (10-99%). Diet crude protein concentration and DMD were usually high, averaging 12.4 and 62%, respectively, and were related asymptotically to the percentage of Leucaena in the diet (R2 = 0.48 and 0.33, respectively). F.NIRS calibrations for DWG were not satisfactory to predict this variable from an individual faecal sample since the s.e. of prediction were 0.33-0.40 kg/day. Cumulative steer liveweight (LW) predicted from F.NIRS DWG calibrations, which had been previously developed with tropical grass and grass-herbaceous legume pastures, greatly overestimated the measured steer LW; therefore, these calibrations were not useful. Cumulative steer LW predicted from a modified F.NIRS DWG calibration, which included data from the present study, was strongly correlated (R2 = 0.95) with steer LW but overestimated LW by 19-31 kg after 8 months. Additional reference data are needed to develop robust F.NIRS calibrations to encompass the diversity of Leucaena pastures of northern Australia. In conclusion, the experiment demonstrated that F.NIRS could improve understanding of diet quality and nutrient intake of cattle grazing Leucaena-grass pasture, and the relationships between nutrient supply and cattle growth.
Resumo:
Diets containing 3% sorghum ergot (16 mg alkaloids/kg, including 14 mg dihydroergosine/kg) were fed to 12 sows from 14 days post-farrowing until weaning 14 days later, and their performance was compared with that of 10 control sows. Ergot-fed sows displayed a smaller weight loss during lactation of 24 kg/head vs. 29 kg/head in control sows (p > 0.05) despite feed consumption being less (61 kg/head total feed intake vs. 73 kg/head by control sows; p < 0.05). Ergot-fed sows had poorer weight gain of litters over the 14-day period (16.6 kg/litter vs. 28.3 kg/litter for controls; p < 0.05) despite an increase in consumption of creep feed by the piglets from the ergot-fed sows (1.9 kg/litter compared with 1.1 kg/litter by the control; p > 0.05). Sow plasma prolactin was reduced with ergot feeding after 7 days to 4.8 μg/l compared with 15.1 μg/l in the control sows (p < 0.01) and then at weaning was 4.9 μg/l compared with 8.0 μg/l (p < 0.01) in the control sows. Two sows fed ergot ceased lactation early, and the above sow feed intakes, body weight losses with litter weight gains and creep consumption indirectly indicate an ergot effect on milk production.
Resumo:
Near infrared (NIR) spectroscopy, usually in reflectance mode, has been applied to the analysis of faeces to measure the concentrations of constituents such as total N, fibre, tannins and delta C-13. In addition, an unusual and exciting application of faecal NIR [F.NIR] analyses is to directly predict attributes of the diet of herbivores such as crude protein and fibre contents, proportions of plant species and morphological components, diet digestibility and voluntary DM intake. This is an unusual application of NIR spectroscopy insofar as the spectral measurements are made, not on the material of interest [i.e. the diet), but on a derived material (i.e. faeces). Predictions of diet attributes from faecal spectra clearly depend on there being sufficient NIR spectral information in the diet residues present in faeces to describe the diet, although endogenous components of faeces such as undigested debris of micro-organisms from the rumen and Large intestine and secretions into the gastrointestinal tract wilt also contribute spectral information. Spectra of forage and of faeces derived from the forage are generally similar and the observed differences are principally in the spectral regions associated with constituents of forages known to be of low, or of high, digestibility. Some diet components (for example, ureal which are likely to be entirely digested apparently cannot be predicted from faecal NIR spectra because they cannot contribute to faecal spectra except through modifying the microbial and endogenous components. The errors and robustness of F.NIR calibrations to predict the crude protein concentration and digestibility of the diet of herbivores are generally comparable with those to directly predict the same attributes in forage from NIR spectra of the forage. Some attributes of the animal, such as species, gender, pregnancy status and parasite burden have been successfully discriminated into classes based on their faecal NIR spectra. Such discrimination was likely associated with differences in the diet selected and/or differences in the metabolites excreted in the faeces. NIR spectroscopy of faeces has usually involved scanning dried and ground samples in monochromators in the 400-2500nm or 1100-2500nm ranges. Results satisfactory for the purpose have also been reported for dried and ground faeces scanned using a diode array instrument in the 800-1700nm range and for wet faeces and slurries of excreta scanned with monochromators. Chemometric analysis of faecal spectra has generally used the approaches established for forage analysis. The capacity to predict many attributes of the diet, and some aspects of animal physiology, from NIR spectra of faeces is particularly useful to study the quality and quantity of the diet selected by both domestic and feral grazing herbivores and to enhance production and management of both herbivores and their grazing environment.
Resumo:
Grass (monocots) and non-grass (dicots) proportions in ruminant diets are important nutritionally because the non-grasses are usually higher in nutritive value, particularly protein, than the grasses, especially in tropical pastures. For ruminants grazing tropical pastures where the grasses are C-4 species and most non-grasses are C-3 species, the ratio of C-13/C-12 in diet and faeces, measured as delta C-13 parts per thousand, is proportional to dietary non-grass%. This paper describes the development of a faecal near infrared (NIR) spectroscopy calibration equation for predicting faecal delta C-13 from which dietary grass and non-grass proportions can be calculated. Calibration development used cattle faeces derived from diets containing only C-3 non-grass and C-4 grass components, and a series of expansion and validation steps was employed to develop robustness and predictive reliability. The final calibration equation contained 1637 samples and faecal delta C-13 range (parts per thousand) of [12.27]-[27.65]. Calibration statistics were: standard error of calibration (SEC) of 0.78, standard error of cross-validation (SECV) of 0.80, standard deviation (SD) of reference values of 3.11 and R-2 of 0.94. Validation statistics for the final calibration equation applied to 60 samples were: standard error of prediction (SEP) of 0.87, bias of -0.15, R-2 of 0.92 and RPD of 3.16. The calibration equation was also tested on faeces from diets containing C-4 non-grass species or temperate C-3 grass species. Faecal delta C-13 predictions indicated that the spectral basis of the calibration was not related to C-13/C-12 ratios per se but to consistent differences between grasses and non-grasses in chemical composition and that the differences were modified by photosynthetic pathway. Thus, although the calibration equation could not be used to make valid faecal delta C-13 predictions when the diet contained either C-3 grass or C-4 non-grass, it could be used to make useful estimates of dietary non-grass proportions. It could also be ut :sed to make useful estimates of non-grass in mixed C-3 grass/non-grass diets by applying a modified formula to calculate non-grass from predicted faecal delta C-13. The development of a robust faecal-NIR calibration equation for estimating non-grass proportions in the diets of grazing cattle demonstrated a novel and useful application of NIR spectroscopy in agriculture.
Resumo:
The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images. PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.
Resumo:
BACKGROUND: The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. RESULTS: It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. CONCLUSION: The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados.
Resumo:
Near infrared spectroscopy (NIRS) can play a vital role as a cost effective, rapid, non-invasive, reproducible diagnostic tool for many environmental management, agricultural and industrial waste water monitoring applications. In this paper we highlight the ability of NIRS technology to be used as a diagnostic tool in agricultural and environmental applications through the successful assessment of Fourier Transform NIRS to predict α santalol in sandalwood chip samples, and maturity of ‘Hass’ avocado fruit based on dry matter content. Presented at the Third International Conference on Challenges in Environmental Science & Engineering, CESE-2010. 26 September – 1 October 2010, The Sebel, Cairns, Queensland, Australia.
Resumo:
Acidity in terms of pH and titratable acids influences the texture and flavour of fermented dairy products, such as Kefir. However, the methods for determining pH and titratable acidity (TA) are time consuming. Near infrared (NIR) spectroscopy is a non-destructive method, which simultaneously predicts multiple traits from a single scan and can be used to predict pH and TA. The best pH NIR calibration model was obtained with no spectral pre-treatment applied, whereas smoothing was found to be the best pre-treatment to develop the TA calibration model. Using cross-validation, the prediction results were found acceptable for both pH and TA. With external validation, similar results were found for pH and TA, and both models were found to be acceptable for screening purposes.